Partnergroup Renormalization-group investigation of the 2D Hubbard model A. A. Katanina,b a Institute of Metal Physics, Ekaterinburg, Russia b Max-Planck Institut für Festkörperforschung, Stuttgart Many thanks for collaboration to: A. P. Kampf (Institut für Physik, Universität Augsburg) W. Metzner (Max-Planck Institut für Festkörperforschung, Stuttgart) 2008 Content I. The model II. The field theoretical and functional RG approaches III. Phase diagrams IV. Fulfillment of Ward Identities V. The two-loop corrections VI. Conclusions and future perspectives 2 The 2D Hubbard model H c c U n n k k k i i k , i t t' 2 t ( cos k cos k ) 4 t ' ( cos k cos k 1 ) x y x y k U t , t ' 0 • Provides a prototype model of interacting fermionic systems leading to nontrivial physics Experimental relevance: high-Tc cuprates Cuprates (Bi2212) La2-x SrxCuO4 A. Ino et al., Journ. Phys. Soc. Jpn, 68, 1496 (1999). Bi2212 D.L. Feng et al., Phys. Rev. B 65, 220501 (2002) • The weak-coupling regime U < W/2 Why it is interesting: • Non-trivial • Gives a possibility of rigorous numerical and semianalytical RG treatment. 3 The case of general Fermi surface k1, k3, kF k1+ k2=k3 + k4 k4,' k2 ,' There is no ‘interference’ between different channels (channel separation) k1= k2; k3= k4: BCS channel k1= k3; k2= k4: ZS channel k1= k4; k2= k3: ZS' channel q0 q , 1 U q0 0q q 1 U 0q k q0 k f k f k q k k q N ( EF ) = 1 f k f q k = k k q k The Fermi liquid k+q k ln 0 q q-k max( vF q,T ) Possible types of instabilities: Superconducting (only for U<0) Ferro- and antiferromagnetic instabilities are not in the weak-coupling regime The parameter space Questions to answer: • What are the possible instabilities for t-t' dispersion? • How do they depend on the form of the Fermi surface, model parameters e.t.c. ? 0.5 The line of van Hove singularities t'/t 0.0 1.0 n 0.0 Nesting Instabilities are possible due to the peculiarities of the electron spectrum: • nesting (kk+Q) n=1; t'=0; • van Hove singularities (k=0) n=nVH; any t'5 Theoretical approaches Parquet approach (V.V. Sudakov, 1957; I.E. Dzyaloshinskii, 1966; I.E. Dzyaloshinskii and V.M. Yakovenko, 1988) Field-theory renormalization group approach (P. Lederer et al., 1987; T.M. Rice, N. Furukawa, and M. Salmhofer, 1999; A.A. Katanin, V.Yu. Irkhin and M.I. Katsnelson, 2001; B. Binz, D. Baeriswyl, and B. Doucot, 2001) Functional renormalization group approach Polchinskii equations (D. Zanchi and H.J. Schulz, 1996; 2000) Wick-ordered equations (M. Salmhofer, 1998; C.J. Halboth and W. Metzner, 2000; D. Rohe and W. Metzner, 2005) Equations for 1PI functional (M. Salmhofer, T.M. Rice, N. Furukawa, and C. Honerkamp, 2001) Equations for 1PI functional with temperature cutoff (M. Salmhofer and C. Honerkamp, 2001; A. Katanin and A. P. Kampf, 2003, 2004) Continuous unitary transformations (C.P. Heidbrink and G. Uhrig, 2001; I. Grote, E. Körding and F. Wegner, 2001) The field-theory (two-patch) approach 2 t ( sin k cos k ) 2 t ( cos k sin k ) B 2 A k 22 x 22 y B k 22 x 22 y A Similar to the “left” and “right” moving particles in 1D ( 1 / 2 ) arccos( 2 t '/ t ) But the geometry of the Fermi surface and the dispersion are different ! 7 The two patch equations at T » | Possible types of vertices There is no separation of the channels: each vertex is renormalized by all the channels dg / d 2 d ( )g (g g ) 2 d g g 2 d g g 1 1 1 2 1 2 1 4 3 1 2 dg / d d ( )(g g ) 2 d (g g )g d (g g ) 2 1 2 3 2 1 2 4 3 1 2 2 2 2 2 dg / d 2 d ( )g g 2 d ( )g ( 2 g g ) 3 0 3 4 1 3 2 1 dg / d d ( )(g g ) d (g 2 g g 2 g g ) 4 0 3 4 2 1 1 2 2 4 2 2 2 2 1 R; d ( ) 'pp ( ) 2/ 0 ,0 2 ' 2 d ( ) ( ) 2 min( ,ln [( 1 1 R )/ R ]); 1 ph ,Q 2 R2t'/t ln( /T) ' 2 d ( ) 2/ 1 R ; 2 ph ,0 ' 1 2 d ( ) 2 tan ( R / 1 R )/ R 3 pp ,Q 8 The vertices: scale dependence U=2t, t'/t=0.1 (nVH=0.92) g3 (umklapp) g2 (inter-patch direct) g1 () g4 U=2t, t'/t=0.45 (nVH=0.47) g1 (inter-patch exchange) g4 (intra-patch) g2 g3 () 9 Phase diagram: vH band fillings T=0, =0 32 - patch fRG approach 10 Functional renormalization group o Projecting momenta to the Fermi surface o Projecting frequencies to zero o 32-48 patches on the Fermi surface (after M. Salmhofer and C. Honerkamp, 2001) 1PI functional RG • Considers the evolution of the 1PI generating functional 1 2 ( ) 1 1 1 ( ) Tr (C Q ) ( , Q ) Tr[Q ] 2 2 2 2 (T. Morris, 1994; M. Salmhofer and C. Honerkamp, 2001) • Expands ( ) in fields ( ) 1 d m X ( m ) ( X ) ( X 1 ).... ( X m ) m! m • Obtains the equations for the coefficients of the expansion 1 1 2 2 1 1 (4) ( ) Tr[ S (4) ( )] Tr[ S (2) ( )G (2) ( )] 2 2 … (2) ( ) ( , Q ) Tr[ S (2) ( )] where ( m ) ( X ; ) m 1 d m X ' ( m 2) ( X , X ') ( X 1 ').... ( X m ') m! • Truncates the hierarchy of equations, e.g. (4) ( ) 0 12 1PI scheme Temperature cutoff T Gk 1 S k i n k k i n k 1 2 2 (i n k k ) 13 Phase diagram: vH band fillings T=0, =0 32 - patch fRG approach 14 Ward identities d V S d dV V (G S S G ) V d Ward identity: q ( 2 k k k q k q k k k q k q )Gk Gk q k k q k is fulfilled up to the order V2 only Replacement: S d G d in the equation for the vertex (A. Katanin, Phys. Rev. B 70, 115109 (2005)) improves fulfillment of Ward identities Applications: • Zero-dimensional impurity problems (C. Schönhammer, V. Meden, and T. Pruschke, 2005, 2008) • Flow into symmetry-broken phases (W. Metzner, M. Salmhofer, C. Honerkamp, and R. Gersch, 2005-2008) 15 Half filling, non-nested Fermi surface MF n=1 48-patch fRG approach: antiferromagnetic QMC: H.Q. Lin and J.E. Hirsch, Phys. Rev. B 35, 3359 (1987). d-wave superconducting PIRG: T. Kashima and M. Imada Journ. Phys. Soc. Jpn 70, 3052 (2001). MF: W. Hofstetter and D. Vollhardt, Ann. Phys. 7, 48 (1998) 16 Angular dependence of the order parameter Electron-doped sc, A. A. Katanin, Hole-doped sc, A. A. Katanin and A. P. Kampf, Phys. Rev. 2005 Phys. Rev. 2006 Max Hot spot J. Mesot et al., Phys. Rev. Lett. 83, 840 (1999). Pr0.89LaCe0.11CuO4 H. Matsui et al., Phys. Rev. Lett. 95, 017003 (2005). 17 Taking 6-point vertex into account d V S d dV V (G S S G ) V d 0 S d V G V G V S U 2.5t 0.1t A. Katanin, arXiv:2008 0.1t 18 Scattering rates 0.1t Landau FL NFL Landau FL NFL 0.1t 0.1t From spin-fermion theory: (R. Haslinger, Ar. Abanov, and A. Chubukov, 2001) 19 Summary of the results of fRG approach fRG allows for treating competing instabilities in fermionic systems and obtain information about susceptibilities phase diagrams symmetries of the order parameter quasiparticle characteristics The ferro-, antiferromagnetic, and superconducting instabilities occur in different regions of phase diagram; the order parameter symmetry deviates from the standard s- and d-wave forms The quasiparticle residues remain finite in the paramagnetic state; the quasiparticle damping shows a T2 dependence at low T and T1-a dependence at higher T, a 0 The truncation at 4-point vertex yields results compatible with more complicated truncations; the divergence of vertices and susceptibilities is however suppressed including the 6-point vertex Future perspectives Detail description of quantum critical points similarity to CSB in QCD ? T vs. RC QD QPT T * 0 QC Application to the localized Heisenberg (e.g. frustrated) magnets – bosonic (magnons) vs. fermionic (spinons) excitations H J SiSi H3D Hanis 2 i O(N) or O(N)/O(N-2) NL-model La2CuO4 field-theor. RG + 1/N expansion, V. Yu. Irkhin, A. Katanin et al., PRB 1997 Frustration and quantum criticality Combination with other nonperturbative approaches Including long-range interactions, gauge fields etc.
© Copyright 2026 Paperzz