BIOSTATISTICS Statistical tests part IV: nonparametric tests INTRODUCTION 1. Mann-Whitney test • Applicability 2. Wilcoxon test • Definition 3. Kruskal-Wallis test • Example Copyright ©2012, Joanna Szyda INTRODUCTION TEST HYPOTHESES SAMPLE STRUCTURE Copyright ©2011, Joanna Szyda MANN-WHITNEY TEST MANN-WHITNEY TEST 1. Comparison of means 2. Quantitative or ordered data (ranks) 3. No normal distribution required 4. Two independent samples Copyright ©2012, Joanna Szyda MANN-WHITNEY TEST DATA SET MEDIUM HIGH 5.5 6.0 6.0 7.0 5.0 7.5 7.0 6.0 5.5 7.5 6.0 8.0 7.0 11.0 6.0 9.0 8.0 8.0 7.0 11.0 6.0 8.0 7.0 8.0 6.0 7.0 8.0 7.0 6.0 7.0 7.0 9.0 1. Shrimp length in different water salinities 3. Shrimp length [mm] at 4 weeks of age 10 8 6 N 4 2 0 1 2 3 4 5 6 7 8 9 LENGTH 8 6 N4 2 0 1 2 3 4 5 6 7 8 9 10 11 LENGTH Copyright ©2012, Joanna Szyda MANN-WHITNEY TEST 1. Formulate hypotheses H0 and H1 H0: shrimp length does not depend on water salinity H1: shrimp length depends on water salinity H0: H = M H1: H ≠ M 2. Set the significance level MAX = 0.05 3. Choose the statistical test and calculate test value n2 n2 1 n2 n1 n1 1 n1 U min n1n2 r2i , n1n2 r1i 2 2 i 1 i 1 Excel: example Copyright ©20112 Joanna Szyda MANN-WHITNEY TEST 3. Choose the statistical test and calculate test value n2 n2 1 n2 n1 n1 1 n1 U min n1n2 r2i , n1n2 r1i 2 2 i 1 i 1 1617 1617 U min16 *16 182, 16 *16 346 2 2 min 46, 210 46 Copyright ©2011, Joanna Szyda MANN-WHITNEY TEST 4. Determine distribution of the test • Nonparametric test – no known distribution • For n1n2 > 20 – approximated by a normal distribution: U z ~ U U U2 N U , U2 n1n2 U 2 n1n2 n1 n2 1 12 no tables ~ N 0,1 tables Copyright ©2011, Joanna Szyda MANN-WHITNEY TEST 4. Determine distribution of the test z n1n2 16 *16 U 46 2 2 3.09 ~ n1n2 n1 n2 1 16 *1633 12 12 N 0,1 5. Determine t: t 0.002 Excel: example or compare with a critical value: U 0.05,n1 16,n2 16 181 U t 46 Copyright ©2011, Joanna Szyda MANN-WHITNEY TEST 6. Decision t < max H1 Ut < U H0 ATTENTION !!! shrimp length depends on water salinity Copyright ©2012, Joanna Szyda WILCOXON TEST WILCOXON TEST 1. Nonparamteric test 2. Quantitative or ordered data (ranks) 3. No normal distribution required 4. Comparison of two paired samples Copyright ©2011, Joanna Szyda WILCOXON TEST DATA SET NO LAMB IID LAMB 1 72.00 55.50 2 62.35 43.80 3 55.77 66.80 4 59.98 68.00 5 51.60 57.88 6 61.48 61.90 7 52.57 45.40 8 52.50 56.67 9 56.43 73.30 10 60.13 77.50 11 48.60 63.53 12 42.90 54.50 13 53.50 55.58 14 70.43 91.10 15 47.10 64.05 16 50.08 71.40 1. Feeding behaviour of sheep 2. Data collected in1994-1996 in Canada, Rocky Mountains region 3. Differences in time of feeding with / without lamb 4. % time spent on feeding Copyright ©2011, Joanna Szyda WILCOXON TEST DATA SET NO LAMB IID LAMB 1 72.00 55.50 2 62.35 43.80 3 55.77 66.80 4 59.98 68.00 5 51.60 57.88 6 61.48 61.90 7 52.57 45.40 8 52.50 56.67 9 56.43 73.30 10 60.13 77.50 11 48.60 63.53 12 42.90 54.50 13 53.50 55.58 14 70.43 91.10 15 47.10 64.05 16 50.08 71.40 3 2 N 1 0 -25 -20 -15 -10 -5 0 5 10 15 20 DIFFERENCE IN TIME Copyright ©2011, Joanna Szyda WILCOXON TEST 1. Formulate hypotheses H0 and H1 H0: feeding time does not depend on a lamb H1: feeding time depends on a lamb H0: J = B H1: J ≠ B 2. Set the significance level MAX = 0.05 3. Choose the statistical test and calculate test value n1 N n1 W min ri , ri i n1 i 1 Excel: example Copyright ©2011, Joanna Szyda WILCOXON TEST 3. Choose the statistical test and calculate test value n1 N n1 W min ri , ri min 107, 29 29 i n1 i 1 Copyright ©2011, Joanna Szyda WILCOXON TEST 4. Determine distribution of the test • Nonparametric test – no known distribution • For N > 15 – approximated by a normal distribution: W z ~ W W 2 W N W , W2 ~ N 0,1 N N 1 W 4 z ~ N 0,1 N N 12 N 1 24 16 *17 29 4 z 2.02 ~ N 0,1 16 *17 * 33 24 Copyright ©2011, Joanna Szyda WILCOXON TEST 5. Determine t: t 0.0437 Excel: example or compare with a critical value : W 0.05, N 16 29 Wt 29 6. Decision t < max Wt = W feeding time depends on a lamb H0 H1 ? ? Copyright ©2011, Joanna Szyda KRUSKAL-WALLIS TEST KRUSKAL-WALLIS TEST 1. Comparing variability 2. Quantitative or ordered data (ranks) 3. No normal distribution required 4. Analysis of variance Copyright ©2012, Joanna Szyda KRUSKAL-WALLIS TEST DATA SET 1. Height of adult women in the USA 2. Three age groups 20-29 30-39 40-49 161.925 164.465 173.990 173.355 171.450 175.260 158.115 173.355 167.640 170.815 175.260 166.370 179.705 164.465 168.910 Copyright ©2011, Joanna Szyda KRUSKAL-WALLIS TEST 1. Formulate hypotheses H0 and H1 H0: women's height is the same in each age interval H1: women's height differs across age intervals H0: H1: 2. Set the significance level MAX = 0.05 3. Choose the statistical test and N calculate test value NA 12 2 2 H n R R ~ i i N A 1 N N 1 i 1 total no of observations NA number of groups Ri mean ranking within group i R mean overall ranking Copyright ©2011, Joanna Szyda KRUSKAL-WALLIS TEST 3. Choose the statistical test and calculate test value NA 12 12 2 2 2 2 H n R R 5 7 . 2 8 5 8 8 5 8 8 6.45 i i N N 1 i 1 1515 1 4. Determine distribution of the test: ~ 321 5. Determine t: t 0.0398 6. Decision: Excel: example t < max H0 H1 women's height differs across age intervals Copyright ©2011, Joanna Szyda NONPARAMETRIC TESTS Copyright ©2012 Joanna Szyda
© Copyright 2026 Paperzz