x(t)

PHY 113 A General Physics I
9-9:50 AM MWF Olin 101
Plan for Lecture 3:
Some announcements
Chapter 2 – Motion in one dimension
1. Acceleration
2. Relationships between position,
velocity, and acceleration
9/3/2012
PHY 113 A Fall 2012 -- Lecture 3
1
Some updates/announcements
9/3/2012
PHY 113 A Fall 2012 -- Lecture 3
2
Starting September 3, 2012
Schedule for Physics 113 Tutorials
5-7 PM in Olin 101
Sunday
Monday
Tuesday
Wednesday
Thursday
Friday
Loah Stevens
Jiajie Xiao
Jiajie Xiao
Stephen Baker
Stephen Baker
Loah Stevens
First Webassign sets “due” on Friday, Sept. 7th
PHY 113 Labs start September 3, 2012
(Please see Eric Chapman in Olin 110
[email protected] for all of your
laboratory concerns)
9/3/2012
PHY 113 A Fall 2012 -- Lecture 3
3
Velocity
Instanteous velocity :
dx
v(t ) 
dt
Average velocity :
v
9/3/2012
B
A
x(t B )  x(t A )

tB  t A
PHY 113 A Fall 2012 -- Lecture 3
4
Instantaneous velocity using calculus
Suppose:
x(t )  5  6t  7t 2  2t 4
dx
v(t ) 
 6  14t  8t 3
dt
9/3/2012
PHY 113 A Fall 2012 -- Lecture 3
5
Anti-derivative relationship
Constant velocity motion
dx
Suppose :
 v0
dt
Then :
x(t )  x0  v0t
Example - - suppose x0  0 and v0  0.3 m/s :
x
t
9/3/2012
PHY 113 A Fall 2012 -- Lecture 3
6
Acceleration
Instanteous acceleration :
dv d dx d 2 x
 2

a (t ) 
dt dt dt dt
Average acceleration :
a
9/3/2012
B
A
v(t B )  v(t A )

tB  t A
PHY 113 A Fall 2012 -- Lecture 3
7
Rate of acceleration
Instanteous rate of acceleration :
da d dv d 2 v d d dx d 3 x

 2 
 3
dt dt dt dt
dt dt dt dt
Instanteous rate of rate of acceleration :
d da d 2 a d 2 dv d 3v d 3 dx d 4 x
 2  2
 3  3
 4
dt dt dt
dt dt dt
dt dt dt
iclicker exercise
How many derivatives of position are useful for describing motion:
A. 1 (dx/dt)
B. 2 (d2x/dt2)
C. 3 (dx3/dt3)
D. 4 (dx4/dt4)
E. 
9/3/2012
PHY 113 A Fall 2012 -- Lecture 3
8
Anti-derivative relationship
Constant acceleration motion
dv
Suppose :
 a0
and v( 0 )  v0 , x( 0 )  x0
dt
Then :
v(t )  v0  a0t
x(t )  x0  v0t  12 a0t 2
9/3/2012
PHY 113 A Fall 2012 -- Lecture 3
9
Examples
v(t )  v0  a0t
x0  0
x(t)  x0  v0t  12 a0t 2
v0  5m/s
a0  9.8 m/s 2
v(t)
x(t)
9/3/2012
PHY 113 A Fall 2012 -- Lecture 3
10
Examples
v(t )  v0  a0t
x0  0
x(t)  x0  v0t  12 a0t 2
v0  5m/s
a0  9.8 m/s 2
v(t)
x(t)
9/3/2012
PHY 113 A Fall 2012 -- Lecture 3
11
Summary
dx
v(t ) 
dt
dv
a (t ) 
dt
9/3/2012
t

x(t )   v(t ' )dt '
t0
t

v(t )   a (t ' )dt '
t0
PHY 113 A Fall 2012 -- Lecture 3
12
Another example
x(t)
v(t)
9/3/2012
PHY 113 A Fall 2012 -- Lecture 3
13
From webassign:
velocity at t  5s :
v(5s )  2m / s 2  5s  10m / s
position at t  5s :
1
2
2
x(5s )  2m / s  5s   25m
2
9/3/2012
PHY 113 A Fall 2012 -- Lecture 3
14
Special case: constant velocity due to earth’s gravity
In this case, the “one” dimension is the vertical
direction with “up” chosen as positive:
a = -g = -9.8 m/s2
y(t) = y0 + v0t – ½ gt2
y0 = 0
v0 = 20 m/s
At what time tm will the ball hit the ground
ym = -50m ?
Solve: ym = y0 + v0tm – ½ gtm2
quadratic equation
physical solution: tm = 5.83 s
9/3/2012
PHY 113 A Fall 2012 -- Lecture 3
15