PHY 113 A General Physics I 9-9:50 AM MWF Olin 101 Plan for Lecture 3: Some announcements Chapter 2 – Motion in one dimension 1. Acceleration 2. Relationships between position, velocity, and acceleration 9/3/2012 PHY 113 A Fall 2012 -- Lecture 3 1 Some updates/announcements 9/3/2012 PHY 113 A Fall 2012 -- Lecture 3 2 Starting September 3, 2012 Schedule for Physics 113 Tutorials 5-7 PM in Olin 101 Sunday Monday Tuesday Wednesday Thursday Friday Loah Stevens Jiajie Xiao Jiajie Xiao Stephen Baker Stephen Baker Loah Stevens First Webassign sets “due” on Friday, Sept. 7th PHY 113 Labs start September 3, 2012 (Please see Eric Chapman in Olin 110 [email protected] for all of your laboratory concerns) 9/3/2012 PHY 113 A Fall 2012 -- Lecture 3 3 Velocity Instanteous velocity : dx v(t ) dt Average velocity : v 9/3/2012 B A x(t B ) x(t A ) tB t A PHY 113 A Fall 2012 -- Lecture 3 4 Instantaneous velocity using calculus Suppose: x(t ) 5 6t 7t 2 2t 4 dx v(t ) 6 14t 8t 3 dt 9/3/2012 PHY 113 A Fall 2012 -- Lecture 3 5 Anti-derivative relationship Constant velocity motion dx Suppose : v0 dt Then : x(t ) x0 v0t Example - - suppose x0 0 and v0 0.3 m/s : x t 9/3/2012 PHY 113 A Fall 2012 -- Lecture 3 6 Acceleration Instanteous acceleration : dv d dx d 2 x 2 a (t ) dt dt dt dt Average acceleration : a 9/3/2012 B A v(t B ) v(t A ) tB t A PHY 113 A Fall 2012 -- Lecture 3 7 Rate of acceleration Instanteous rate of acceleration : da d dv d 2 v d d dx d 3 x 2 3 dt dt dt dt dt dt dt dt Instanteous rate of rate of acceleration : d da d 2 a d 2 dv d 3v d 3 dx d 4 x 2 2 3 3 4 dt dt dt dt dt dt dt dt dt iclicker exercise How many derivatives of position are useful for describing motion: A. 1 (dx/dt) B. 2 (d2x/dt2) C. 3 (dx3/dt3) D. 4 (dx4/dt4) E. 9/3/2012 PHY 113 A Fall 2012 -- Lecture 3 8 Anti-derivative relationship Constant acceleration motion dv Suppose : a0 and v( 0 ) v0 , x( 0 ) x0 dt Then : v(t ) v0 a0t x(t ) x0 v0t 12 a0t 2 9/3/2012 PHY 113 A Fall 2012 -- Lecture 3 9 Examples v(t ) v0 a0t x0 0 x(t) x0 v0t 12 a0t 2 v0 5m/s a0 9.8 m/s 2 v(t) x(t) 9/3/2012 PHY 113 A Fall 2012 -- Lecture 3 10 Examples v(t ) v0 a0t x0 0 x(t) x0 v0t 12 a0t 2 v0 5m/s a0 9.8 m/s 2 v(t) x(t) 9/3/2012 PHY 113 A Fall 2012 -- Lecture 3 11 Summary dx v(t ) dt dv a (t ) dt 9/3/2012 t x(t ) v(t ' )dt ' t0 t v(t ) a (t ' )dt ' t0 PHY 113 A Fall 2012 -- Lecture 3 12 Another example x(t) v(t) 9/3/2012 PHY 113 A Fall 2012 -- Lecture 3 13 From webassign: velocity at t 5s : v(5s ) 2m / s 2 5s 10m / s position at t 5s : 1 2 2 x(5s ) 2m / s 5s 25m 2 9/3/2012 PHY 113 A Fall 2012 -- Lecture 3 14 Special case: constant velocity due to earth’s gravity In this case, the “one” dimension is the vertical direction with “up” chosen as positive: a = -g = -9.8 m/s2 y(t) = y0 + v0t – ½ gt2 y0 = 0 v0 = 20 m/s At what time tm will the ball hit the ground ym = -50m ? Solve: ym = y0 + v0tm – ½ gtm2 quadratic equation physical solution: tm = 5.83 s 9/3/2012 PHY 113 A Fall 2012 -- Lecture 3 15
© Copyright 2026 Paperzz