Darshan Institute of Engineering & Technology (Electrical Engineering Department) Name of Topic:- “Two-Port Networks” Enrollment No:- 130540109070 Subject Code:- 2130901 TWO-PORT NETWORKS In many situations one is not interested in the internal organization of a network. A description relating input and output variables may be sufficient A two-port model is a description of a network that relates voltages and currents at two pairs of terminals LEARNING GOALS Study the basic types of two-port models Admittance parameters Impedance parameters Hybrid parameters Transmission parameters Understand how to convert one model into another ADMITTANCE PARAMETERS The network contains NO independent sources The admittance parameters describe the currents in terms of the voltages y21 determines the current I1 y11V1 y12V2 The first subindex identifies the output port. The second the input port. flowing into port 2 when the I 2 y21V1 y22V2 port is short - circuited and a voltage is applied to port 1 The computation of the parameters follows directly from the definition y11 I1 V1 V y12 I2 V1 V y22 2 0 y21 2 0 I1 V2 V 0 1 I2 V2 V 0 1 LEARNING EXAMPLE Find the admittance parameters for the network I1 y11V1 y12V2 I 2 y21V1 y22V2 Circuit used to determine y11, y21 I2 Circuit used to determine y12 , y22 1 3 I1 (1 )V1 y11 [ S ] 2 2 1 1 1 I2 I1 I 2 V1 y21 [ S ] 1 2 2 2 5 1 1 I 2 V2 y22 [ S ] 6 2 3 3 3 5 1 I1 I2 V2 y12 [ S ] 23 5 6 2 Next we show one use of this model An application of the admittance parameters Determine the current through the 4 Ohm resistor I1 y11V1 y12V2 I 2 y21V1 y22V2 3 1 I1 V1 V2 2 2 1 5 I 2 V1 V2 2 6 1 I V2 I1 2 A, V2 4 I 2 2 4 The model plus the conditions at the ports are sufficient to determine the other variables. 3 1 2 V1 V2 2 2 1 5 1 0 V1 V2 2 6 4 13 V2 6 8 V2 [V ] 11 2 I 2 [ A] 11 V1 IMPEDANCE PARAMETERS The network contains NO independent sources V1 z11I1 z12 I 2 V2 z21I1 z22 I 2 The ‘z parameters’ can be derived in a manner similar to the Y parameters z11 V1 I1 I z12 V1 I2 z21 2 0 V2 I1 z22 I1 0 I 2 0 V2 I2 I1 0 HYBRID PARAMETERS The network contains NO independent sources V1 h11 I1 h12V2 I 2 h21 I1 h22V2 h11 V1 I1 V h21 V1 V2 h22 2 0 h12 I1 0 I2 I1 V h11 short - circuit input impedance I2 V2 h21 short - circuit forward current gain 2 0 I1 0 h12 open - circuit reverse voltage gain h22 open - circuit output admittance These parameters are very common in modeling transistors LEARNING EXAMPLE I1 Find the hybrid parameters for the network I2 V1 V2 V1 h11 I1 h12V2 I 2 h21 I1 h22V2 I2 I1 I2 V1 V1 V2 0 V1 (12 (6 || 3)) I1 h11 14 6 2 I2 I1 h21 3 6 3 I1 0 V2 V1 6 2 V2 h12 3 6 3 I2 V2 1 h22 [ S ] 9 9 TRANSMISSION PARAMETERS ABCD parameters The network contains NO independent sources V1 AV2 BI 2 I1 CV2 DI 2 A V1 V2 B C I 2 0 V1 I2 V 2 0 I1 V2 D A open circuit voltage ratio I 2 0 B negative short - circuit transfer impedance I1 I2 V 2 0 C open - circuit transfer admittance D negative short - circuit current ratio PARAMETER CONVERSIONS If all parameters exist, they can be related by conventional algebraic manipulations. As an example consider the relationship between Z and Y parameters V1 z11I1 z12 I 2 V2 z21 I1 z22 I 2 V1 z11 V z 2 21 y11 y 21 1 z12 I1 I1 z11 z22 I 2 I 2 z21 y12 z11 y22 z21 z12 z22 1 1 Z z12 V1 y11 z22 V2 y21 y12 V1 y22 V2 z22 z12 z 21 z11 with Z z11z22 z21z12 In the following conversion table, the symbol stands for the determinant of the corresponding matrix Z z11 z12 z21 z22 , Y y11 y12 y21 y22 , H h11 h12 h21 h22 , T A B C D
© Copyright 2026 Paperzz