Dynamic estimation of prior probabilities in an orientation-discrimination task 1 Department Elyse H. Norton 1 & Michael S. Landy 1,2 of Psychology & 2 Center for Neural Science, New York University Introduction Signal detection theory: Unequal prior probabilities Experimental tasks shift in Overt-criterion task decision criterion1 Start Previous studies: Vary category probability between blocks, Rotate Stimulus & Feedback Points: 1 Points: 1 Points: 0 Points: 0 “Rotate the line to indicate your criterion” 300 ms 300 ms RLP: Reinforcement-learning on probability Estimates probability as an exponentially weighted average of previously seen categories Estimates probability by a proportion of the error when receiving negative feedback EMA + bias Weighted average of EMA estimate and a prior of 0.5 Omniscient criterion n rio RLP + bias Weighted average of RLP estimate and a prior of 0.5 Updated every 80-120 trials Ranged from [.2, .8] .5 P(B) = 1-P(A) .25 .25 0 0 200 400 600 800 0 200 400 600 800 cr nt ie −45 -30 −30 -70 −70 Slope sc ni s pen om er-c Und Fixed criterion O m -45 Under-compensating .4.4 Overt −90 200 400 600 800 200 400 600 800 -150 -150 −150 −150 −90 -90 −30 30 -30 30 00 30 2 3 2 3 4 80 5 4 5 Omniscient criterion (deg) *Estimated over a 25-trial moving 30 1 1 6 7 8 6 7 9 10 11 Observer 11 80 .8.8 window 20 20 -10 −10 Overt-criterion task Covert-criterion task .6.6 .4.4 6 2.5 5 2 600 Fixed criterion 12 8 9 10 11 Avg DICFC-DICAlternative S6 −120 0 x102 x102 Omniscient criterion -120 Covert .2.2 −95 250 500 4 +/- 2 SE 200 400 1.5 150 3 300 1 2 100 200 .5 1 100 0 -1 −100 95% C.I. 50 0 0 0 -.5 −50 1 2 3 4 5 RLC EMA RLP EMA+ RLP+ bias bias 1 2 RLC EMA 3 4 5 RLP EMA+ RLP+ bias bias -40 −40 .2.2 -50 S10 −50 0 200 400 600 0 200 400 600 -100 800 -100 800 Trial Trial −100 −100 −40 20 80 -40 20 80 Conclusions 00 1 1 2 3 2 3 4 5 4 5 6 7 8 6 7 9 10 11 12 8 9 10 11 Avg A1: Observers dynamically update criterion as probability changes, but under-compensate (i.e., they exhibit conservatism). Observer Omniscient criterion (deg) History of previously seen categories: Omniscient criterion: Model fits .6.6 -90 -95 Estimated* vs. omniscient criterion (covert): Estimated criterion (deg) .75 .8.8 g atin Better fit 1 .75 P(A) 30 Trial Random stepwise changes of P(A): 0 Points: 1 Points: 0 2 11 Slope 60 30 −20 Orientation .5 1 ite 30 Observed criterion (deg) Probability density μA ~ [-90, 90] μB = μA + Δθ σA = σB c - neutral criterion -20 0 1 Updates criterion by a proportion of the error when receiving negative feedback EMA: Exponentially weighted moving-average 300 ms “To which category Time does the ellipse belong? Observed vs. omniscient criterion (overt): Category B 0 Feedback Results Δθ c −30 RLC: Reinforcement-learning on criterion Stimulus Response 500 ms Time Stimuli Categories of ellipses: Category A Fixes neutral criterion + Set Q1: Can observers track sudden changes in category probability? Q2: How is prior probability estimated? FC: Fixed Criterion Fixation assume a fixed criterion, and explicitly state probability (e.g. Refs 1-2) −60 Models Covert-criterion task 5 -40 .4 5 0.4 −65 μA -90 0 Knows the category distributions, prior probability, and sensory uncertainty on each trial 4 4 3 3 2 2 1 1 0 0 -1 Linear regression Predicting the current criterion setting from the previous 14 categories −1 −90 0 200 200 400 400 Trial 600 600 800 800 Regression weight μB -65 “Omniscient observer” Regression weight Orientation (deg) −40 A2: Prior probability is estimated as an exponentially Logistic regression weighted average of previously experienced categories with bias towards a prior of 0.5. Predicting the current .3 0.3 .2 0.2 decision from the previous 14 categories .1 0.1 0 -.1 1Green, −0.1 0 5 0 5 10 10 Trial lag 15 15 References / Acknowledgements 0 0 5 0 5 Trial lag 10 15 10 15 D. & Swets, J. (1966). Signal detection theory and psychophysics. New York: Wiley. 2Ackermann, J. F. & Landy, M. S. (2015). Suboptimal decision criteria are predicted by subjectively weighted probabilities and rewards. Attention, Perception & Psychophysics, 77, 638-658. NIH EY08266 [email protected]
© Copyright 2026 Paperzz