On the Eigenvalues of a Class of Saddle Point Matrices V. Simoncini Dipartimento di Matematica Università di Bologna [email protected] . – p.1/22 Thanks to Mario Arioli, RAL, UK Michele Benzi, Emory University (GA) Ilaria Perugia, Università di Pavia Miro Rozloznik, Institute of Computer Science, Academy of Science, Prague . – p.2/22 Application problems • Computational Fluid Dynamics • Elasticity problems • Mixed (FE) formulations of II and IV order elliptic PDEs • Linearly Constrained Programs • Linear Regression in Statistics • Weighted Least Squares (Image restoration) • ... Survey: Benzi, Golub and Liesen, Acta Num 2005 A BT B −C u v = f g . – p.3/22 Motivational Application Constrained Quadratic minimization problem 1 minimize J(u) = hAu, ui − hf, ui 2 subject to Bu = g A n×n spd, B m × n, m ≤ n full rank ⇓ Lagrange multipliers approach Karush-Kuhn-Tucker (KKT) system . – p.4/22 Spectral properties • M= A BT B O 0 < λn ≤ · · · ≤ λ 1 eigs of A 0 < σm ≤ · · · ≤ σ1 sing. vals of B . – p.5/22 Spectral properties • M= A BT B O 0 < λn ≤ · · · ≤ λ 1 eigs of A 0 < σm ≤ · · · ≤ σ1 sing. vals of B • (Rusten & Winther 1992) Λ(M) subset of » 1 (λn − 2 – q q 1 2 ) λ2n + 4σ12 ), (λ1 − λ21 + 4σm 2 ∪ » 1 λn , (λ1 + 2 – q 2 ) λ21 + 4σm . – p.5/22 Spectral properties • M= A B BT −C 0 < λn ≤ · · · ≤ λ 1 eigs of A 0 < σm ≤ · · · ≤ σ1 sing. vals of B • (Rusten & Winther 1992) Λ(M) subset of » 1 (λn − 2 – q q 1 2 ) λ2n + 4σ12 ), (λ1 − λ21 + 4σm 2 ∪ » 1 λn , (λ1 + 2 – q 2 ) λ21 + 4σm • (Silvester & Wathen 1994), 0 ≤ σm ≤ · · · ≤ σ1 q λn − λmax (C) − (λn + λmax (C))2 + 4σ12 . – p.5/22 Spectral properties • M= A B BT −C 0 < λn ≤ · · · ≤ λ 1 eigs of A 0 < σm ≤ · · · ≤ σ1 sing. vals of B • (Rusten & Winther 1992) Λ(M) subset of » 1 (λn − 2 – q q 1 2 ) λ2n + 4σ12 ), (λ1 − λ21 + 4σm 2 ∪ » 1 λn , (λ1 + 2 – q 2 ) λ21 + 4σm • (Silvester & Wathen 1994), 0 ≤ σm ≤ · · · ≤ σ1 q λn − λmax (C) − (λn + λmax (C))2 + 4σ12 More results for special cases (e.g., Perugia & S. 2000) . – p.5/22 Block diagonal Preconditioner e 0 A P= e 0 C e≈A A sym. pos. def. e ≈ BA−1 B T + C C Rusten Winther (1992), Silvester Wathen (1993-1994), Klawonn (1998) Fischer Ramage Silvester Wathen (1998...), . . . . – p.6/22 Block diagonal Preconditioner e 0 A P= e 0 C e≈A A sym. pos. def. e ≈ BA−1 B T + C C Rusten Winther (1992), Silvester Wathen (1993-1994), Klawonn (1998) Fischer Ramage Silvester Wathen (1998...), . . . λ 6= 0 eigs of P − 21 MP − 21 , λ ∈ [−a, −b] ∪ [c, d], a, b, c, d > 0 . – p.6/22 Triangular preconditioner A spd, P= e BT A 0 e −C Bramble & Pasciak, Elman, Klawonn, Axelsson & Neytcheva, S. 2004 . – p.7/22 Triangular preconditioner A spd, P= e BT A 0 e −C Bramble & Pasciak, Elman, Klawonn, Axelsson & Neytcheva, S. 2004 Spectrum of MP −1 : small complex cluster around 1 + real interval . – p.7/22 Triangular preconditioner A spd, P= e BT A 0 e −C Bramble & Pasciak, Elman, Klawonn, Axelsson & Neytcheva, S. 2004 Spectrum of MP −1 : small complex cluster around 1 + real interval θ ∈ Λ(MP −1 ) q e−1 ) =(θ) = 6 0 ⇒ |θ − 1| ≤ 1 − λmin (AA More precisely: e−1 ) ≥ 0) (if 1 − λmin (AA =(θ) = 0 ⇒ θ ∈ [χ1 , χ2 ] 3 1 . – p.7/22 Constraint Preconditioner Q= e B A B −C T Axelsson (1979), Ewing Lazarov Lu Vassilevski (1990), ... many more papers 1997 - . – p.8/22 Constraint Preconditioner Q= e B A B −C T Axelsson (1979), Ewing Lazarov Lu Vassilevski (1990), ... many more papers 1997 - λ 6= 0 eigs of MQ−1 , λ ∈ R+ , λ ∈ {1} ∪ [α0 , α1 ] . – p.8/22 Constraint Preconditioner Q= e B A B −C T Axelsson (1979), Ewing Lazarov Lu Vassilevski (1990), ... many more papers 1997 - λ 6= 0 eigs of MQ−1 , λ ∈ R+ , λ ∈ {1} ∪ [α0 , α1 ] Remark: Bxk = 0 for all iterates xk (C = 0) . – p.8/22 Constraint Preconditioner Q= e B A B −C T Axelsson (1979), Ewing Lazarov Lu Vassilevski (1990), ... many more papers 1997 - λ 6= 0 eigs of MQ−1 , λ ∈ R+ , λ ∈ {1} ∪ [α0 , α1 ] Remark: Bxk = 0 for all iterates xk (C = 0) Q −1 = I −B O I T I O O −(BBT + C)−1 I O −B I e = I if prescaling used) (A . – p.8/22 Computational Considerations. 3D Magnetostatic problem with H: Incomplete Cholesky fact. H ≈ BB T + C (ICT package, Saad & Chow) . – p.9/22 Computational Considerations. 3D Magnetostatic problem with H: Incomplete Cholesky fact. H ≈ BB T + C (ICT package, Saad & Chow) Elapsed Time size 1119 2208 4371 8622 22675 MA 27 QMR b Q Q(2)(it) 0.6 3.0 1.7(18) 2.3 11.7 3.1(18) 10.2 64.6 8.4(20) 83.4 466.0 18.3(29) 753.5 3745.5 63.2(45) QMR ILDLT(10) 0.7 1.5 5.2 31.0 246.0 . – p.9/22 Computational Considerations. 3D Magnetostatic problem with H: Incomplete Cholesky fact. H ≈ BB T + C (ICT package, Saad & Chow) Elapsed Time size 1119 2208 4371 8622 22675 MA 27 QMR b Q Q(2)(it) 0.6 3.0 1.7(18) 2.3 11.7 3.1(18) 10.2 64.6 8.4(20) 83.4 466.0 18.3(29) 753.5 3745.5 63.2(45) QMR ILDLT(10) 0.7 QMR P 4.0 b P(2)(it) 2.0 1.5 15.2 4.9 5.2 73.9 11.0 31.0 510.1 24.3 246.0 4161.4 128.2 . – p.9/22 Spectrum of perturbed problem 3D Magnetostatic problem (a) 0.5 0.4 0.3 0.2 0.1 0 −0.1 −0.2 −0.3 −0.4 −0.5 0 0.5 1 1.5 2 2.5 3 3.5 . – p.10/22 Spectrum of perturbed problem 3D Magnetostatic problem (a) (d) 0.5 0.5 0.4 0.4 0.3 0.3 0.2 0.2 0.1 0.1 0 0 −0.1 −0.1 −0.2 −0.2 −0.3 −0.3 −0.4 −0.4 −0.5 0 0.5 1 1.5 2 2.5 3 3.5 −0.5 0 0.5 1 1.5 k(BB T + C) − Hk∞ ≈ 2 · 10−1 kBB T + Ck∞ 2 2.5 3 3.5 . – p.10/22 Eigenvalue problem 2 b=4 Q I O B I 32 54 2 4 I O O −H A BT B O 32 54 32 54 I BT O I x y 3 3 5, 2 b4 5 = λQ H ≈ BB T , x y C=O 3 5 . – p.11/22 Eigenvalue problem 2 b=4 Q I O B I 32 54 2 4 I O O −H A BT B O 32 54 32 54 I BT O I x y 3 5, H ≈ BB T , 2 3 x b4 5 = λQ y C=O 3 5 can be written as 2 4 I O −B I 2 4 32 54 A BT B O 32 54 I −B T O I A (I − A)B T B(I − A) −B(2I − A)B T 32 54 32 54 u v 3 u v 2 3 I O O −H I O O −H 32 5 = λ4 2 5 = λ4 54 32 54 u v u v 3 5 3 5 . – p.11/22 A “different” perspective A BT −B C u v = f −g M− x = d Polyak 1970, ..., Wathen & Fischer & Silvester 1995, Fischer & Ramage & Silvester & Wathen 1998, Fischer & Peherstorfer 2001, Bai & Golub & Ng 2003, Sidi 2003, Benzi & Gander & Golub 2003, Benzi & Golub 2004, S. & Benzi 2004, ... . – p.12/22 A “different” perspective A BT −B C u v = f −g M− x = d Polyak 1970, ..., Wathen & Fischer & Silvester 1995, Fischer & Ramage & Silvester & Wathen 1998, Fischer & Peherstorfer 2001, Bai & Golub & Ng 2003, Sidi 2003, Benzi & Gander & Golub 2003, Benzi & Golub 2004, S. & Benzi 2004, ... • M positive real ⇒ Λ(M− ) in C+ . – p.12/22 A “different” perspective A BT −B C u v = f −g M− x = d Polyak 1970, ..., Wathen & Fischer & Silvester 1995, Fischer & Ramage & Silvester & Wathen 1998, Fischer & Peherstorfer 2001, Bai & Golub & Ng 2003, Sidi 2003, Benzi & Gander & Golub 2003, Benzi & Golub 2004, S. & Benzi 2004, ... • M positive real ⇒ Λ(M− ) in C+ • More refined spectral information possible . – p.12/22 A “different” perspective A BT −B C u v = f −g M− x = d Polyak 1970, ..., Wathen & Fischer & Silvester 1995, Fischer & Ramage & Silvester & Wathen 1998, Fischer & Peherstorfer 2001, Bai & Golub & Ng 2003, Sidi 2003, Benzi & Gander & Golub 2003, Benzi & Golub 2004, S. & Benzi 2004, ... • M positive real ⇒ Λ(M− ) in C+ • More refined spectral information possible • New classes of preconditioners . – p.12/22 A “different” perspective A BT −B C u v = f −g M− x = d Polyak 1970, ..., Wathen & Fischer & Silvester 1995, Fischer & Ramage & Silvester & Wathen 1998, Fischer & Peherstorfer 2001, Bai & Golub & Ng 2003, Sidi 2003, Benzi & Gander & Golub 2003, Benzi & Golub 2004, S. & Benzi 2004, ... • M positive real ⇒ Λ(M− ) in C+ • More refined spectral information possible • New classes of preconditioners • General framework for spectral analysis of some indefinite preconditioners Benzi & Simoncini (tr 2005) . – p.12/22 Spectral properties of M− M− = A A BT −B C n × n sym. semidef. matrix, B m×n,m≤n M− has at least n − m real eigenvalues Detailed analysis for A = ηI, C = O in: ? Fischer & Ramage & Silvester & Wathen 1998 ? Fischer & Peherstorfer 2001 . – p.13/22 Reality condition Let A be spd and C = βI. If λmin (A + βI) ≥ 4 λmax (B T A−1 B + βI), then all eigenvalues of M− are real (and positive) . – p.14/22 Reality condition Let A be spd and C = βI. If λmin (A + βI) ≥ 4 λmax (B T A−1 B + βI), then all eigenvalues of M− are real (and positive) ——————————– The condition is sufficient, but not necessary: 1 0 0 2 λmin (A) = 12 M− = 0 3 1 , λmax (BA−1 B) = 0 −1 0 1 3 has real spectrum, but does not satisfy the condition . – p.14/22 The (steady-state) Stokes problem −∆u + ∇ p = f in Ω ∇·u=0 in Ω Bu = g on Γ . ⇒ M± . – p.15/22 The (steady-state) Stokes problem −∆u + ∇ p = f in Ω ∇·u=0 in Ω Bu = g on Γ . ⇒ M± Numerical evidence: eigs of M− are all real and positive (for several discretizations and b.c.) . – p.15/22 The (steady-state) Stokes problem −∆u + ∇ p = f in Ω ∇·u=0 in Ω Bu = g on Γ . ⇒ M± Numerical evidence: eigs of M− are all real and positive (for several discretizations and b.c.) Explanation: Ω = [0, 1] × [0, 1], Dirichlet b.c. div-stable discr. λmin (A) ≈ 2π 2 ≈ 19, λmax (BA−1 B T ) ≈ 1 ⇒ λmin (A) > 4λmax (BA−1 B T ) . – p.15/22 (In)definite inner product M− = A BT −B C J = I O O −I J indefinite M− is J-sym. . – p.16/22 (In)definite inner product M− = A BT −B C J = I O O −I J indefinite M− is J-sym. If Λ(M− ) ⊂ R+ , there exists a nonstandard inner product with which M− is spd (and diag.ble) . – p.16/22 (In)definite inner product M− = A BT −B C J = I O O −I J indefinite M− is J-sym. If Λ(M− ) ⊂ R+ , there exists a nonstandard inner product with which M− is spd (and diag.ble) G= A − γI B T B γI , M− G = GMT− . – p.16/22 (In)definite inner product M− = A BT −B C J = I O O −I J indefinite M− is J-sym. If Λ(M− ) ⊂ R+ , there exists a nonstandard inner product with which M− is spd (and diag.ble) G= A − γI B T B γI , M− G = GMT− If γ = 12 λmin (A), λmin (A) > 4λmax (BA−1 B T ) (with C = O) ⇒ G is spd ⇒ G defines an inner product for M− . – p.16/22 Hermitian Skew-Hermitian Preconditioning M− = A BT −B C = = A O O C H + + O BT −B O S . – p.17/22 Hermitian Skew-Hermitian Preconditioning M− = A BT −B C = = A O O C H + + O BT −B O S Use the preconditioner 1 (H + αI)(S + αI) Rα = 2α α ∈ R, α > 0 (Bai & Golub & Ng 2003), Benzi & Gander & Golub 2003, Benzi & Golub 2004, S. & Benzi 2004, Benzi & Ng, 2004 Spectral bounds: Simoncini & Benzi 2004 . – p.17/22 Reality condition Assume A is spd and C = 0. If 1 α ≤ λmin (A) 2 then all eigenvalues of R−1 α M− are real (Simoncini & Benzi ’04) . – p.18/22 Reality condition Assume A is spd and C = 0. If 1 α ≤ λmin (A) 2 then all eigenvalues of R−1 α M− are real (Simoncini & Benzi ’04) But even more general: If λmin (A) > 4λmax (BA−1 B T ) then all eigenvalues are real for any α (cf. Stokes problem) . – p.18/22 Location of M− ’s spectrum Let λ ∈ Λ(M− ), x = [u; v] e’vect., A spd (cf. Sidi ’03, C = O) ? If =(λ) 6= 0 then 1 (λmin (A) + λmin (C)) ≤ 2 1 <(λ) ≤ (λmax (A) + λmax (C)) 2 |=(λ)| ≤ σmax (B). . – p.19/22 Location of M− ’s spectrum Let λ ∈ Λ(M− ), x = [u; v] e’vect., A spd (cf. Sidi ’03, C = O) ? If =(λ) 6= 0 then 1 (λmin (A) + λmin (C)) ≤ 2 1 <(λ) ≤ (λmax (A) + λmax (C)) 2 |=(λ)| ≤ σmax (B). ? If =(λ) = 0 then for v 6= 0 2 min{λmin (A), λmin (C)} ≤ λ ≤ max{λmax (A), λmax (C)} and for v = 0, λmin (A) ≤ λ ≤ λmax (A) . – p.19/22 Location of M− ’s spectrum Let λ ∈ Λ(M− ), x = [u; v] e’vect., A spd (cf. Sidi ’03, C = O) ? If =(λ) 6= 0 then 1 (λmin (A) + λmin (C)) ≤ 2 1 <(λ) ≤ (λmax (A) + λmax (C)) 2 |=(λ)| ≤ σmax (B). ? If =(λ) = 0 then for v 6= 0 2 min{λmin (A), λmin (C)} ≤ λ ≤ max{λmax (A), λmax (C)} and for v = 0, λmin (A) ≤ λ ≤ λmax (A) 2 0 1 λ1 = 1, M− = 0 1 0 −1 0 1 λ2,3 √ 3 3 = ±i . 2 2 . – p.19/22 Inexact Indefinite Precond. A (I − A)B T B(I − A) −B(2I − A)B T u v = λ I O O −H u v . – p.20/22 Inexact Indefinite Precond. A (I − A)B T B(I − A) −B(2I − A)B T Eigenvalue bounds: Let ? If =(λ) 6= 0 then 1 b ≤ (λmin (A) + λmin (C)) 2 u v = λ I O O −H u v b = B(2I − A)B T H −1 C <(λ) 1 b ≤ (λmax (A) + λmax (C)) 2 |=(λ)| ≤ σmax ((I − A)BH − 12 ). ? If =(λ) = 0 then b ≤ λ ≤ max{λmax (A), λmax (C)} b 2 min{λmin (A), λmin (C)} . – p.20/22 Spectral bounds 2 bounding box of nonreal eigs 1.5 imaginary part of eigenvalues 1 0.5 0 a a2 1 −0.5 −1 −1.5 −2 0 0.5 1 1.5 real part of eigenvalues 2 2.5 . – p.21/22 Final Considerations • New framework increases understanding . – p.22/22 Final Considerations • New framework increases understanding • But: in general eigenvector analysis may be challenging . – p.22/22 Final Considerations • New framework increases understanding • But: in general eigenvector analysis may be challenging • General non-Hermitian problem not fully understood . – p.22/22 Final Considerations • New framework increases understanding • But: in general eigenvector analysis may be challenging • General non-Hermitian problem not fully understood • Visit http://www.dm.unibo.it/˜simoncin . – p.22/22
© Copyright 2026 Paperzz