4.2.6 NUMERICAL EXAMPLES Example 4.1 The following are the principal stress at a point in a stressed material. Taking E 0.3 , calculate the volumetric strain and the Lame’s constants. and x 200 N / mm 2 , 150 N / mm 2 , y 120 N / mm 2 z Solution: We have 1 E x x y 1 200 0.3 150 120 210 10 3 x y 4 5.67 10 1 E y z 1 z 2.57 10 1 E x 210 10 3 v y 120 0.3 200 150 5 7.14 10 Volumetric strain = x y z 5.67 10 v 200 4 z 1 z x 150 0.3 120 210 10 3 y z 4 8.954 10 2.57 10 3 To find Lame’s constants We have, G E 21 210 10 3 G 2 1 0.3 G 80.77 10 3 N / mm 2 G 2G E E 3G 80.77 10 3 2 80.77 10 3 210 10 3 210 10 3 3 80.77 10 3 4 7.14 10 5 210 kN / mm 2 121 .14 10 3 N / mm 2 Example 4.2 The state of strain at a point is given by x 0.001, y 0.003, z xy 0, 0.004, xz Determine the stress tensor at this Poisson’s ratio = 0.28. Also find Lame’s constant. yz point. 0.001 Take Solution: We have E 21 G 210 10 6 2 1 0.28 82.03 10 6 kN / m 2 G G 2G E E 3G But 82.03 10 6 2 82.03 16 6 210 10 6 210 10 6 3 82.03 10 6 104 .42 10 6 kN / m 2 Now, 2G x y z 2 82.03 104.42 10 6 0.001 104.42 10 6 44780 kN / m 2 x or x 44.78 MPa x 2G y y z x 2 82.03 104.42 or y 701020 kN / m 2 y 701 .02 MPa z 2G z x 10 6 = 2 82.03 104.42 10 0 z 208840 kN / m2 z 208 .84 MPa xy G xy = 82.03 10 6 0 0.003 104.42 10 6 0 0.001 y 6 or 0.003 0 104.42 10 6 0.001 0.003 E 210 10 6 kN / m 2 , xy 0 yz G yz 82.03 MPa xz G or or 82.03 10 6 0.001 82030 kN / m 2 yz 82.03 10 6 xz 0.004 328120 kN / m 2 328.12 MPa xz The Stress tensor is given by ij x xy xz xy y yz xz yz z 44.78 0 328 .12 0 701 .02 82.03 328 .12 82.03 208 .84 Example 4.3 The stress tensor at a point is given as 200 160 160 120 100 kN / m 2 240 120 100 160 Determine the strain tensor at this point. Take E Solution: 1 E x x y 1 = x z 200 0.3 210 10 6 1.067 10 210 10 6 kN / m2 and 240 160 6 1 y y E = y = z Now, G xy 1 210 10 6 1.657 10 1 E z z 210 10 6 0.82 10 E 21 G xy G x 240 0.3 160 200 6 x 1 xy xy z y 160 0.3 200 240 6 210 10 6 2 1 0.3 80.77 10 6 160 80.77 10 6 80.77 10 6 kN / m 2 xy 1.981 10 6 0.3 100 80.77 10 6 120 80.77 10 6 yz yz G zx zx G 1.24 10 6 1.486 10 6 Therefore, the strain tensor at that point is given by xy x x xy xz 2 xz 2 xy ij xy y yz zx zy z yz y 2 zx 2 1.067 0.9905 ij z 2 0.743 0.9905 1.657 0.62 0.62 0.82 0.743 2 zy 6 10 Example 4.4 A rectangular strain rosette gives the data as below. 0 45 90 670 micrometre s / m 330 micrometre s / m 150 micrometre s / m Find the principal stresses 1 and 2 2 105 MPa, if E 0.3 Solution: We have x y 2 xy 670 10 0 45 90 150 10 0 90 160 10 xy 6 6 = 2 330 10 6 670 10 6 150 10 6 6 Now, the principal strains are given by max i.e., or x min max or min max or min y 2 1 2 2 x y 2 xy 670 150 1 10 6 670 150 10 2 2 410 10 6 272 .03 10 6 6 2 6 max 1 682 .3 10 min 2 137.97 10 6 The principal stresses are determined by the following relations 1 1 1 2 2 .E 682 .03 0.3 137 .97 10 1 0.3 2 6 2 10 5 160 10 6 2 1 Similarly, 159 MPa 2 2 2 1 1 2 75.3MPa .E 137 .97 0.3 682 .03 10 1 0.3 2 6 2 10 5
© Copyright 2026 Paperzz