SPE 56487 Analysis and Interpretation of Well Test Performance at Arun Field, Indonesia Authors: T. Marhaendrajana, Texas A&M U. N.J. Kaczorowski, ExxonMobil (Indonesia) T.A. Blasingame, Texas A&M U. Summary A comprehensive field case history of the analysis and interpretation of well test data from the Arun Gas Field (Sumatra, Indonesia). 2-zone radial composite reservoir model is effective for diagnosing the effects of condensate banking at Arun Field. Summary Development and application of a new solution for the analysis and interpretation for wells that exhibit "well interference" effects. Outline Introduction Well Test Analysis Strategy Multiwell Model Regional Pressure Decline Analysis Procedure Field Example Conclusions Arun Field Field Description Located Ø in Northern part of Sumatra, Indonesia Retrograde gas reservoir One of the largest gas fields in the world Arun Field has 111 wells: Ø Ø Ø Ø Ø 79 producers 11 injectors 4 observation wells 17 wells have been abandoned Ø Ø N Ø Ø Ø Ø Major Phenomena in Arun Liquid accumulation near wellbore (condensate banking) Need to know radial extent of condensate banking for the purpose of well stimulation. Well interference effect This well interference effect tends to obscure the radial flow response, and hence, influence our analysis and interpretation efforts. Well Test Analysis Strategy Condensate banking phenomenon 2-zone radial composite reservoir model is used, where the inner zone represents the "condensate bank," and the outer zone represents the "dry gas reservoir." (Raghavan, et al, (1995) and then by Yadavalli and Jones (1996) ) Well interference effect Developed a new method for the analysis of well test data from a well in multiwell reservoir where we treat the "well interference" effect as a "Regional Pressure Decline." Multiwell Model n well p D(xD,y D,t DA) = q i=1 D,iu(t DA – t sDA,i) p D,i(xD,y D,[tDA – tsDA,i],xwD,i,y wD,i) Bounded Reservoir with Multiple Wells Analytical Solution Matches Numerical Solution 3 10 Dimensionless Pressure, pD Legend: Numerical Simulation Analytical Solution 2 10 pD 1 10 0 pD' 10 -1 10 -6 10 -5 -4 -3 -2 -1 0 10 10 10 10 10 10 Dimensionless Time,tDA (Based on Drainage Area) 1 10 Regional Pressure Decline Model Issues: Arun Field has been produced for over 20 years and currently in "blowdown" mode. Drawdown and buildup tests induce local transient effects. Most of the well tests performed at Arun Field are relatively short (< 5 hours producing time), and the pseudosteady-state flow condition is not established in the area of investigation given such short production times. Regional Pressure Decline Model Assumptions: All of the wells in the reservoir are at pseudosteadystate flow conditions at the time the "focus" well is shut-in. Any rate change at the focus well (including a drawdown/buildup sequence) cause transient flow conditions only in the vicinity of the focus well–not in the entire reservoir. Regional Pressure Decline Model Pressure at focus well: p wD(tDA) = p D,1([xwD,1 + ],[y wD,1 + ],tDA,xwD,1,y wD,1) + 2tDA(D – 1) Vpc t dp Vpc t = where: D = q1B dt q1B Regional Pressure Decline Model Pressure buildup analysis relations: p sD(t DA) + 2( D – 1)t DA = 1 ln 4 t DAe A2 + s 2 e rw Vs. Straight line on semilog plot Regional Pressure Decline Model Pressure buildup analysis relations: 2 dp sD t t DAe = 1 – 2 ( D – 1) DA t DAe dt DAe 2 Vs. Straight line on Cartesian plot Rate, q Simulated Case Offset wells are produced at the same flowrate. Focus well is shut-in Focus well is put on production Time, t Offset wells are kept on production. Focus well is shut-in Multiwell Response is Different than Single Well Response ', [p-pwf(( t=0)] format psD' p[psDws wsp wf t=0)] format 0.5 0.3 0.0 -0.3 pbar continues to decline. Pressure builds up to pbar (closed boundary) -0.5 -0.8 -1.0 Legend: Multiwell, Single Well -1.3 -1.5 -1.8 , tpDA=1x10 , tpDA=1x10 , tpDA=1x10 , tpDA=1x10 -2 -3 -4 -5 -2.0 0 10 20 ttDA DA 30 -3 40x10 psDe ' [p - p t=0)] (t=0)] psDe ', [p format format ws ws-pwf(wf Straight Line on Cartesian Plot 1.00 0.75 0.50 psDe' = 0.5 - 2(D - 1) tDA2/ tDAe 0.25 psDe' = 0.5 0.00 -0.25 -0.50 -0.75 Legend: -1.00 tpDA=1x10 -1.25 tpDA=1x10 -1.50 tpDA=1x10 -1.75 tpDA=1x10 -2 -3 -4 -5 -2.00 0 10 20 2 2 /tDAe tDA tDA / tDAe 30 -3 40x10 Regional Pressure Decline Signature May Not Be Unique [p',ws psDep'sDe (t=0)] (t=0)] [pws--pp formatformat wfwf 1 0 This portion may be falsely pinterpreted - 2regional (D - 1) tDA2/ tDAe sDe' = 0.5 as psDe' = 0.5 pressure decline effect. -1 -2 -3 Legend: tpDA=1x10 -4 tpDA=1x10 tpDA=1x10 tpDA=1x10 -5 -5 10 -4 10 -2 -3 -4 -5 -3 10 -2 10 -1 10 2 tDA 2 /tDAe tDA / tDAe 0 10 1 10 2 10 Analysis Procedures for Multiwell Reservoirs To analyze pressure buildup tests taken in multiwell systems, we recommend the following procedures: 1: Plot te(dpws/dte) versus t2/te on a Cartesian scale. From the straight-line trend we obtain the slope mc and intercept bc. We calculate permeability using the intercept term as: Step qB k = 70.6 b ch Analysis Procedures for Multiwell Reservoirs 2: The Horner plot [(pws+mct) versus log((tp+t)/t)] can also be used to estimate formation properties. From the straight-line trend observed on the Horner plot, we obtain the slope msl as well as the intercept term, (pws + mct) t=1hr. Step Permeability And the skin is factor estimated is calculated using: using: qB– p (p wsk+=m162.6 t) t=1hr c wf,t = 0 s = 1.1513 h mm sl sl tp k – 1.1513 log + log – 3.22751 2 t p+1 c tr w Analysis Procedures for Multiwell Reservoirs Step 3: In order to use standard single-well type curves for type curve matching, we must make the appropriate "corrections". These relations are: Pressure function: p ws,cor = p ws + m ct Pressure derivative function: dp ws t e dt e cor t 2 dp ws = t e + mc t e dt e Well C-I-18 (A-096) [Test Date: September 1992] Well C-I-18 (A-096)28 [Test Date: 28 September 1992] 3 Pseudopressure Functions, psi Functions, psi Pseudopressure 10 2 10 Infinite acting Reservoir Improvement onModel (Does not includederivative. non-Darcy flow) pressure 1 10 Condensate banking region. Higher mobility region. Closed boundary at 160 ft? (includes non-Darcy flow). 0 10 -1 10 -4 10 -3 10 -2 10 -1 10 0 10 Effective Shut-in Pseudotime, tae, hrs Effective shut-in pseudotime, hrs 1 10 Pseudopressure, Shut-in Shut-in Pseudopressure, ppws , psia psia Well C-I-18 (A-096) [Test Date: 28 September 1992] Well C-I-18 (A-096) [Test Date: 28 September 1992] 1160 1140 Condensate banking region. 1120 Higher mobility region. 1100 1080 1060 1040 1020 3 10 2 10 1 10 Horner Pseudotime, ( ta+tpa)/ta (tpa=tp=1.56 hr), hr Horner pseudotime, hrs (tp = 1.56 hr) 0 10 pws Shut-in Pseudopressure, p , psia psia pseudopressure, Shut-in Well C-I-18 (A-096) [Test Date: 1992] Well C-I-18 (A-096)28 [TestSeptember Date: 28 September 1992] 1150 pp,bar = 1148.6 psia Data deviate from the "Muskat line" --indicating an interference effect from surrounding wells. Onset of boundary dominated flow. 1149 1148 1147 1146 "Transient flow" 1145 1144 1143 1142 0 2 4 6 dppwsdp/d/dtat ,, psi/hr psi/hr pws a 8 10 Well C-I-18 (A-096) [Test Date: 28 Date: September 1992] Well C-I-18 (A-096) [Test 28 September 1992] 15 p ae (p(pp')')ttae, psi , psi 10 5 0 -5 -10 -15 0 5 10 15 2 ttaa2//tae, thrs ae 20 25 30 psi Functions, Pseudopressure Pseudopressure Functions, psi Example 3: Log-log Summary Plot Well C-IV-11 (A-084) [TestDate: Date:55 January January 1992] Well C-IV-11 (A-084) [Test 1992] 3 10 Raw data Corrected Improvement on pressure derivative. 2 10 1 10 Closed boundary atReservoir 150 ft? Model Infinite-acting (Does not include non-Darcy (includes non-Darcy flow). flow) 0 10 -4 10 -3 10 -2 10 -1 10 0 10 Effective Shut-in Pseudotime, tae, hrs Effective shut-in pseudotime, hrs 1 10 Example 3: Horner (Semilog) Plot C-IV-11 (A-084)[Test [TestDate: Date: 55January 1992] WellWell C-IV-11 (A-084) January 1992] Shut-in Pseudopressure, ppws , psiapsia Pseudopressure, Shut-in 2100 2000 1900 1800 1700 1600 1500 1400 Raw data Corrected 1300 1200 3 10 2 10 1 10 Horner Pseudotime, ( ta+tpa)/ta (tpa=tp=1.62 hr), hr Horner pseudotime, hrs (tp = 1.62 hr) 0 10 Example 3: Muskat Plot (single well pavg plot) Shut-inpseudopressure, Pseudopressure, ppws , psia psia Shut-in C-IV-11 (A-084)[Test [Test Date: Date: 55January 1992] WellWell C-IV-11 (A-084) January 1992] 1922 pp,bar = 1920 psia 1920 Onset of boundary dominated flow. 1918 1916 "Transient flow" 1914 1912 1910 0 5 10 dp pws dppws /d/dtta, ,psi/hr psi/hr a 15 20 Example 3: "Well Interference" Plot (radial flow only) Well C-IV-11 [TestDate: Date:5 January 5 January 1992] Well C-IV-11(A-084) (A-084) [Test 1992] 25 Intercept is used to calculate permeability. Slope is used in the pressure correction. 15 (p ') ae p t (pp')tae , psi 20 10 5 0 Presence of multiwell interference effects is unclear -5 0 5 10 15 2 ttaa/2/tae, hrs tae 20 25 psi Functions, Pseudopressure Pseudopressure Functions, psi Example 4: Log-log Summary Plot Well Well C-IV-11 (A-084) [Test May1992] 1992] C-IV-11 (A-084) [TestDate: Date: 4 4 May 3 10 Raw data Corrected Improvement on pressure derivative. 2 10 Condensate banking region. 1 10 Infinite-acting Reservoir Model Closed(Does boundary at 197 ft? Higher mobility not include non-Darcy flow) (includes non-Darcy flow). region. 0 10 -4 10 -3 10 -2 10 -1 10 Effective Shut-in Pseudotime, t , hrs 0 10 ae Effective shut-in pseudotime, hrs 1 10 Example 4: Horner (Semilog) Plot C-IV-11 (A-084)[Test [Test Date: Date: 44May 1992] WellWell C-IV-11 (A-084) May 1992] Shut-in Pseudopressure, ppws , psiapsia Pseudopressure, Shut-in 1950 1900 1850 1800 1750 Condensate banking region. Higher mobility region. 1700 1650 1600 Raw data Corrected 1550 1500 3 10 2 10 1 10 Horner Pseudotime, ( ta+tpa)/ta (tpa=tp=1.63 hr), hr Horner pseudotime, hrs (tp = 1.63 hr) 0 10 Example 4: Muskat Plot (single well pavg plot) Shut-inpseudopressure, Pseudopressure, ppws , psia psia Shut-in C-IV-11 (A-084)[Test [Test Date: Date: 44May 1992] WellWell C-IV-11 (A-084) May 1992] 1884 pp,bar = 1882.8 psia 1882 1880 Onset of boundary dominated flow. 1878 1876 "Transient flow" 1874 1872 1870 0 5 10 dp pws dppws /d/dtta, ,psi/hr psi/hr a 15 20 Example 4: "Well Interference" Plot (radial flow only) Well C-IV-11 [TestDate: Date: 4 May 1992] Well C-IV-11(A-084) (A-084) [Test 4 May 1992] 40 Intercept is used to calculate permeability. Slope is used in the pressure correction. ae p'), tpsi (pp')(tpae 30 20 10 (pp')tae >0, no clear indication of multiwell interference effects. 0 0 5 10 15 2 ta / tae ta /2tae, hrs 20 25 30 Flow Capacity (kh, md-ft) from Well Test Analysis (Arun Field, Indonesia) kh Map 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 16000 16000 kh 15000 15000 10000 5000 4000 20000 10000 30000 10000 9000 40000 8000 7000 30000 A-108 6000 A-017 A-107 10000 A-097 A-070A-048 A-060 A-041 A-084 A-062 50000 50000 7000 10000 20000 A-095 11000 A-078 A-015 A-080 A-034 A-016 A-035 A-077 20000 A-099 10000 8000 A-098 40000 A-058 A-071 20000 9000 12000 A-032ST A-032 A-061 A-021 A-024 A-106 A-082 A-105ST2A-102 A-068 A-022ST2 A-029 20000 40000 A-083 A-033 A-089 A-073 A-040 30000 A-093 10000 10000 13000 A-027 10000 A-092 A-067 20000 A-088 20000 12000 11000 14000 A-081 A-036 A-076 A-045 A-079ST 30000 A-059 A-074 A-025ST 40000 A-042 A-054 A-096 20000 A-104 30000 13000 A-101 10000 14000 30000 A-103 x-position (relative distance) distribution appears reasonable. 3 major "bubbles" of kh noted, probably erroneous. kh shown is for the "outer" zone (when the radial composite model is used). 1x2 Perspective View A-085 10000 A-049 6000 A-110ST A-046 40000 40000 A-100 A-053 10000 60000 A-091 80000 Legend: (Well Test Analysis) A-051 50000 5000 Flow Capacity (kh) Contour Plot (10,000 md-ft Contours) Arun Field (Indonesia) A-109 100000 4000 3000 3000 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 y-position (relative distance) Logarithm of the Non-Darcy Flow CoefficientD, ( 1/MSCFD) from Well Test Analysis (Arun Field, Indonesia) D (Non-Darcy) Map 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 16000 16000 1x2 Perspective View 15000 15000 A-103 A-081 A-036 -4 A-076 A-045 A-079ST -3.8 A-059 -3.8 A-074 A-025ST -5 A-042 A-054A-104 A-096 -4.8 -4.6 A-088 -4.2 A-067 -4.6 A-077 A-095 -4.8 7000 A-107 A-108 5000 4000 -4 A-017 A-097 A-070A-048 A-060 A-041 -4 A-084 A-062 -3.8 6000 A-015 A-080 A-034 A-016 A-035 8000 7000 -3.8 -3.6 -3.6 -3.4 -5 9000 -3.8 -4.8 A-099 -4.2 A-071 8000 10000 -4.2 A-098 -4.6 A-058 11000 A-078 -4 9000 12000 A-032ST A-032 A-061 A-021 A-024 A-106 A-082 A-105ST2A-102 A-068 A-022ST2 A-029 -4.6 A-083 A-033 A-089 A-073 A-040 A-093 -4.4 10000 A-027 -4.6 A-092 13000 -4.2 12000 11000 14000 A-101 -4.2 -4 13000 No Data -4.4 14000 x-position (relative distance) map indicates a uniform distribution. "high" and "low" regions appear to be focused near a single well. Relatively small data set (30 points). -4.4 This A-085 A-049 A-110ST A-046 A-053 Legend: (Well Test Analysis) A-091 Logarithm of the Non-Darcy A-051 Flow Coefficient (log(10) Contours) Arun Field (Indonesia) A-109 A-100 6000 5000 4000 3000 3000 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 y-position (relative distance) Condensate Bank Radius (ft) from Well Test Analysis (Arun Field, Indonesia) 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 16000 16000 Condensate Radius Map Good 15000 14000 13000 15000 A-103 No Data 14000 A-101 A-081 A-036 A-076 A-045 A-079ST A-059 A-074 A-025ST 30 A-042 A-054A-104 25 A-096 13000 25 10 15 10 5 25 7000 10 20A-017 10 A-097 A-070A-048 A-060 A-041 A-084 A-062 10 7 A-108 20 25 A-107 8000 Condensate Bank Contour Plot (Various Contours) Arun Field (Indonesia) 20 4000 A-049 1 3 5000 A-085 3 7 5 A-110ST A-046 A-053 A-091 Legend: (Well Test Analysis) 25 A-051 7000 7 A-077 A-015 A-080 A-034 A-016 A-035 15 5 A-099 10 20 9000 A-095 6000 10000 25 8000 11000 A-078 7 5 A-098 35 A-058 A-071 3 9000 12000 15 A-032ST A-032 A-061 A-021 A-024 A-106 A-082 A-105ST2A-102 A-068 A-022ST2 A-029 A-083 A-033 A-089 A-073 A-04030 A-093 5 10000 A-027 35 25 30 15 20 11000 25 A-092 A-067 40 12000 A-088 30 x-position (relative distance) distribution of values—"high" spots probably indicate need for individual well stimulations. Relatively small data set (32 points). 1x2 Perspective View A-109 A-100 6000 5000 4000 3000 3000 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 y-position (relative distance) D (Non-Darcy)—kh Crossplot crossplot indicates an "order of magnitude" correlation. Verifies that nonDarcy flow effects are systematic. Non-Darcy Flow Coefficient ( D, 1/MSCFD) from Well Test Analysis ( D at Time of Well Test) D-kh Comparison of Non-Darcy Flow Coefficient ( D) from Well Test Analysis versus Flow Capacity ( kh) from Well Test Analysis (Arun Field -- Indonesia) 3 4 5 6 10 10 10 10 -3 6 10 10 Slope = 2 -4 5 10 10 -5 4 10 10 Legend: DWT vs. khWT Comparison of D from Well Test Analysis versus kh from Well Test Analysis (Arun Field -- Indonesia) -6 3 10 10 3 10 4 5 10 10 Flow Capacity (kh, md-ft) from Well Test Analysis ( kh at Time of Well Test) 6 10 Conclusions The new "multiwell" solution has been successfully derived and applied for the analysis of well test data taken from a multiwell reservoir system. The appearance of "boundary" effects in pressure buildup test data taken in multiwell reservoirs can be corrected using our new approach. Care must be taken so as not to correct a true "closed boundary" effect. Conclusions The 2-zone radial composite reservoir model has been shown to be representative for the analysis and interpretation of well test data from Arun Field (most of the wells exhibit radial composite reservoir behavior). Conclusions The effect of non-Darcy flow on pressure buildup test analysis seems to be minor for the wells in Arun Field. Although not a focus of the present study, our analysis of the pressure drawdown (flow test) data appear to be much more affected by non-Darcy flow effects. SPE 56487 Analysis and Interpretation of Well Test Performance at Arun Field, Indonesia Authors: T. Marhaendrajana, Texas A&M U. N.J. Kaczorowski, ExxonMobil (Indonesia) T.A. Blasingame, Texas A&M U. psDPressure ' or psDe' or pDerivative format Functions Dim. sDc' , [pws -pwf (t=0)] The "Regional Pressure Decline" Improves The Derivative 0 10 tpDA=10-5 tpDA=10-4 tpDA =10-3tpDA Shut-in time =10-2 -1 10 Agarwal eff. shut-in time -2 10 -6 10 -5 10 -4 10 tDA or tDAe tDA or tDAe -3 10 -2 10 psD orpsDpsDc [p, ws (t=0)] (t=0)] or psDc [pws--pp formatformat wfwf 9 8 -5 -4 -3 tpDA=10-2 7 MDH 6 5 4 Agarwal effective time 3 -6 10 -5 10 -4 10 tDA or tDAe tDA or tDAe -3 10 -2 10
© Copyright 2026 Paperzz