Logical Effort Basics from Bart Zeydel Logical Effort Components vcc vcc Wp/Lp In Out in out Wp Wp Wn/Ln in out vss Wn Ln Wn vss Template Ln Template Width Scaled by • Input Capacitance increases by · Ctemplate • Resistance decreases by Rtemplate / Fall 2004 Prof. V. G. Oklobdzija: High-Performance System Design 2 Logical Effort Input Capacitance Cox eox / tox (unit: F/m2) Leff = L – 2xd Gate Oxide Polysilicon Cgate = CoxWLeff = CoxWL(1 – 2xd / L) k1 = Cox(1 – 2xd / L) Ctemplate(inv) = k1WnLn + k1WpLp xd xd Leff Cin(inv) = · Ctemplate(inv) • Input Capacitance is the sum of the gate capacitances • Using LE, denotes size in multiples of the template Fall 2004 Prof. V. G. Oklobdzija: High-Performance System Design 3 Logical Effort Resistance R = (r / t) (L / W) ohms R = Rsheet (L / W) ohms W L Rchannel = Rsheet (L / W) ohms Channel Rsheet = 1 / ( mCox ( Vgs – Vt )) ohms k2 = Cox (Vgs – Vt) t W L m = surface mobility Rchannel = L / (k2 m W) ohms Rup(inv) = Rup-template(inv) / Rdown(inv) = Rdown-template(inv) / • Resistance is dependent on channel width and process • Larger values of result in lower resistance. Fall 2004 Prof. V. G. Oklobdzija: High-Performance System Design 4 Logical Effort Parasitics W Xc Cja Cjp W Ldiff junction capacitance per m2 periphery capacitance per m width of diffusion region m length of diffusion region m C j C ja W Ldiff C jp (2 W 2 Ldiff ) Ldiff W Xc Ldiff Cjp Cja • Larger values of result in increased parasitic cap, however R decreases at same rate, thus constant RC delay. Fall 2004 Prof. V. G. Oklobdzija: High-Performance System Design 5 RC Model for CMOS logic gate Ru Out In Cin Fall 2004 Rd Cp Prof. V. G. Oklobdzija: High-Performance System Design Cout 6 LE Delay derivation for step input dVout Id C dt I d ( sat) I d (lin) W m n Cox L Vdd C W (VGS Vt ) 2 m n Cox L 2 Vdd Vt tf Id Vout C I d ( sat) 2 V (VGS Vt ) 2 VD D 2 dV Vdd / 2 Vdd Vt C I d (lin) Out dV tf In Fall 2004 Prof. V. G. Oklobdzija: High-Performance System Design 7 LE Model derivation (cont.) t f ( sat) C W (VDD Vt ) 2 mn Cox L 2 t f (lin) tf W m n Cox L Vdd Vt dv Vdd 2Vt C W mn Cox (VDD Vt ) 2 L 2 V 2 OUT (VDD Vt ) VOUT dv 2 Vdd Vt Vdd / 2 2 Vt 4 (VDD Vt ) VDD C ln W VDD m n Cox (VDD Vt ) VDD Vt L Substituting in R and C to obtain 2 Vt Vt t f R C ln 3 4 V V V t DD DD k Fall 2004 Prof. V. G. Oklobdzija: High-Performance System Design 8 Logical Effort Gate Delay Model vcc Cin Ct vcc in out Wp Wp in R Rt out vss Wn Ln Wn vss Gate Template Ln Scaled Gate t f k R(Cout C p ) Cout Rt k Ct Ct Rt k ( C p ) Cout k Rt C p (k Rt Ct ) Cin Fall 2004 Prof. V. G. Oklobdzija: High-Performance System Design 9 Logical Effort Gate Delay Model Simplify Analysis by Normalizing to Inverter Template Rt Ct Cout Rt C p t f k RinvCinv RinvCinv Cin RinvCinv Doesn’t change with k Rinv Cinv k Rt Ct Rt Ct g RinvCinv Doesn’t change with Cout h Cin p Rt C p RinvCinv t f ( g h p) Same derivation can be performed for tr Fall 2004 Prof. V. G. Oklobdzija: High-Performance System Design 10 Estimating g and p of Gates Inverter NAND2 2 b a 2 2 a NOR2 q q 1 a 2 b 2 a 4 b 4 q a 1 b 1 g = (2+1)/(2+1) =1 g = (2+2)/(2+1) = 4/3 g = (4+1)/(2+1) = 5/3 p = Cp-inv/Cinv = pinv p = [(2+2+2)/(2+1)]pinv = 2pinv p = [(4+1+1)/(2+1)]pinv = 2pinv Fall 2004 Prof. V. G. Oklobdzija: High-Performance System Design 11 130nm Delay of Gates vs. h 60 50 Delay (ps) 40 30 20 Slope 7.3ps 10 0 0 1 2 3 4 5 6 Electrical Effort: h Fall 2004 Prof. V. G. Oklobdzija: High-Performance System Design 12 Normalized Delay of Gates vs. h 8 7.3ps Normalized Delay () 7 6 5 4 3 Effort Delay 2 1 Parasitic Delay 0 0 1 2 3 4 5 6 Electrical Effort: h Fall 2004 Prof. V. G. Oklobdzija: High-Performance System Design 13 Normalized Delay Estimate of Gates vs. h Note: To simplify analysis Assume Cp-inv = Cinv 8 Normalized Delay: d 7 6 5 4 3 Effort Delay 2 1 Parasitic Delay 0 0 1 2 3 4 5 6 Prof. V. G. Oklobdzija: High-Performance System Design 14 Electrical Effort: h Fall 2004 LE Path Delay Input Capacitance Logical Effort: Parasitic Delay Stage Effort: Gate 1 Gate 2 Cin g1 p1 f1 C2 g2 p2 f2 Gate 3 Cout C3 g3 p3 f3 D [( g1h1 p1 ) ( g 2 h2 p2 ) ( g3h3 p3 )] • Any n-stage path can be described using Logical Effort Fall 2004 Prof. V. G. Oklobdzija: High-Performance System Design 15 LE Path Delay Optimization D [( g1h1 p1 ) ( g 2 h2 p2 ) ( g3h3 p3 )] h1 C2 Cin h2 C3 C2 h3 Cout C3 C3 Cout C2 D [( g1 p1 ) ( g 2 p2 )( g 3 p3 )] Cin C2 C3 Fall 2004 Prof. V. G. Oklobdzija: High-Performance System Design 16 LE Path Delay Optimization (cont.) By Definition, Cin and Cout are fixed. C3 Cout C2 D [( g1 p1 ) ( g 2 p2 ) ( g 3 p3 )] Cin C2 C3 Solve for C2 and C3: C3 D g1 g2 2 0 C2 Cin C2 C3 C2 g1 g2 Cin C2 C D g 2 g 3 out2 0 C3 C2 C3 g2 f1 f 2 C3 C g 3 out C2 C3 f 2 f3 Minimum delay occurs when stage efforts are equal f1 f 2 f 3 f opt Fall 2004 Prof. V. G. Oklobdzija: High-Performance System Design 17 Simplified Path Optimization We want the effort of each stage to be equal. F f1 f 2 f 3 ... f n1 f n = Path Effort f opt F 1/ n = Stage Effort To quickly solve for F: F g1h1 g 2 h2 g3h3 ...g n1hn1 g n hn Cout H h1 h2 h3 ...hn 1 hn Cin G g1 g 2 g3 ...g n1 g n F G H Fall 2004 = Logical Effort of the path Prof. V. G. Oklobdzija: High-Performance System Design 18 Delay Optimization Example C2 Cin = 1 C3 C4 81 g f = gh Ci Gate 1 1 Gate 2 1 Gate 3 1 Gate 4 1 1 1 1 1 1 1 81 1 Total Delay = (84 + 4pinv) Fall 2004 Prof. V. G. Oklobdzija: High-Performance System Design 19 Delay Optimization Example C2 Cin = 1 C3 C4 81 g f = gh Ci Gate 1 1 Gate 2 1 Gate 3 1 Gate 4 1 1 1 1 1 40.5 1 2 40.5 Total Delay = (44.5 + 4pinv) Fall 2004 Prof. V. G. Oklobdzija: High-Performance System Design 20 Delay Optimization Example C2 Cin = 1 C3 C4 81 g f = gh Ci Gate 1 1 Gate 2 1 Gate 3 1 Gate 4 1 1 1 10.1 1 4 10.1 2 40.5 Total Delay = (17.1 + 4pinv) Fall 2004 Prof. V. G. Oklobdzija: High-Performance System Design 21 Delay Optimization Example C2 Cin = 1 C3 C4 81 g f = gh Ci Gate 1 1 Gate 2 1 Gate 3 1 Gate 4 1 10.1 1 1 10.1 4 10.1 2 40.5 Total Delay = (17.1 + 4pinv) Fall 2004 Prof. V. G. Oklobdzija: High-Performance System Design 22 Optimal Sizing for Delay C2 Cin = 1 C3 C4 81 g f = gh Ci Gate 1 1 Gate 2 1 Gate 3 1 Gate 4 1 3 1 3 3 3 9 3 27 Optimal Delay = (12 + 4pinv) Fall 2004 Prof. V. G. Oklobdzija: High-Performance System Design 23 Delay Optimization and Sizing Example C2 Cin = 1 C3 C4 n n D f i pi i 1 i 1 81 C1 C2 C3 Cout 4 pi D g inv Cin C1 C2 C3 i 1 Use Logical Effort to optimize sizes for Delay F f1 f 2 f 3 f 4 4 F g i hi 81 f opt 4 81 3 i 1 Fall 2004 Prof. V. G. Oklobdzija: High-Performance System Design 24 Delay Optimization and Sizing Example Cin = 1 C2 C3 C4 81 Size from output to input using fopt Cout gCout f g Cin Cin f C4 (81 ginv ) / 3 27 C3 (27 ginv ) / 3 9 C2 (9 ginv ) / 3 3 C1 (3 ginv ) / 3 1 Delay Estimate 4 4 D 3 pinv 12 4 pinv i 1 i 1 Fall 2004 Prof. V. G. Oklobdzija: High-Performance System Design 25 Example 2: Path Optimization C2 Cin = 1 C4 C3 81 g f = gh Ci Size Gate 1 1 1 1 1 Gate 2 5/3 Gate 3 4/3 Gate 4 1 5/3*3/5 4/3*3/4 4/3 5/3 1 1 81 1 1 Total Delay = (85 + 6pinv) Fall 2004 Prof. V. G. Oklobdzija: High-Performance System Design 26 Example 2: Path Optimization C2 Cin = 1 C3 C4 81 g f = gh Ci Size Gate 1 1 Gate 2 5/3 3.66 1 3.66 3.66 1 2.2 Gate 3 4/3 3.66 8.06 6.04 Gate 4 1 3.66 22.1 22.1 Optimal Delay = (14.64 + 6pinv) Fall 2004 Prof. V. G. Oklobdzija: High-Performance System Design 27 Example 2: LE Solution Cin = 1 C2 C3 C4 81 4 F g i hi 180 i 1 f opt 4 180 3.66 Size from output to input using fopt C4 (81 ginv ) / 3.66 22.1 C3 (22.1 g nand 2 ) / 3.66 8.06 Size Ci / gi Delay Estimate C2 (8.06 g nor 2 ) / 3.66 3.66 C1 (3.66 ginv ) / 3.66 1 S1 = 1, S2 = 2.2, S3 = 6.04, S4 = 22.1 4 4 D 3.66 pi 14.64 6 pinv i 1 i 1 Fall 2004 Prof. V. G. Oklobdzija: High-Performance System Design 28 Logical Effort for Multi-path f0 f1 f2 Gate 0 Gate 1 Gate 2 Path a Cout1 Cin Gate 3 Gate 4 Gate 5 Cout2 Path b f3 From LE, f 0 f1 f 2 f4 and f5 f3 f 4 f5 Minimum delay occurs when Da = Db or Fa = Fb (ignoring parasitics) f 0 f1 f 2 f 3 f 4 f 5 Fall 2004 Prof. V. G. Oklobdzija: High-Performance System Design 29 Logical Effort for Multi-path (cont.) Da [( g 0 h0 p0 ) ( g1h1 p1 ) ( g 2 h2 p2 )] Db [( g 3 h3 p3 ) ( g 4 h4 p4 ) ( g 5 h5 p5 )] Cout1 Fa g 0 g1 g 2 C0 Cout 2 Fb g 3 g 4 g 5 C3 g g g C C0 0 1 2 out1 Fa g 3 g 4 g 5 Cout 2 C3 Fb Branching: Ratio of total capacitance to on-path capacitance C o C3 ba C0 Fall 2004 C3 C 0 bb C3 Prof. V. G. Oklobdzija: High-Performance System Design 30 Logical Effort for Multi-path (cont) Substituting C0 and C3 g 0 g1 g 2 C out1 g 3 g 4 g 5 C out 2 Fa Fb ba g 0 g1 g 2 C out1 Fa Since Minimum Delay occurs when Da = Db or Fa = Fb g 0 g1 g 2 Cout1 g 3 g 4 g 5 Cout 2 ba g 0 g1 g 2 Cout1 Similarly g 3 g 4 g 5 Cout 2 g 0 g1 g 2 Cout1 bb g 3 g 4 g 5 Cout 2 • Branching = 2 when Ga = Gb and Cout1 = Cout2 Fall 2004 Prof. V. G. Oklobdzija: High-Performance System Design 31 Example 3: Uniform Branching Cout2 = C5+C3 C6 C5 81 Cin = 1 C2 C4 C3 g f = gh Ci b Gate 1 1 1 Gate 2 5/3 10/3 1 1 1 2 81 Gate 3,5 4/3 Gate 4,6 1 4/3 1 81 1 1 1 Total Delay = (86.67 + 6pinv) Fall 2004 Prof. V. G. Oklobdzija: High-Performance System Design 32 Example 3: Uniform Branching Cout2 = C5+C3 Cin = 1 g f = gh Ci b C6 C5 81 C2 C3 C4 Gate 1 1 4.36 1 Gate 2 5/3 4.36 4.36 Gate 3,5 4/3 4.36 Gate 4,6 1 4.36 1 2 5.69 1 18.6 1 81 Optimal Delay = (17.44 + 6pinv) Fall 2004 Prof. V. G. Oklobdzija: High-Performance System Design 33 Example 3: LE Solution Cout2 = C5+C3 C6 C5 81 C2 Cin = 1 C4 C3 F GBH 360 81 f opt 4 360 4.36 Size from output to input using fopt C6 C4 (81 ginv ) / 4.36 18.6 C2 (2 5.69 g nor2 ) / 4.36 4.36 C5 C3 (18.6 g nand 2 ) / 4.36 5.69 C1 (4.36 ginv ) / 4.36 1 Delay Estimate 4 4 D 4.36 pi 17.44 6 pinv i 1 i 1 Fall 2004 Prof. V. G. Oklobdzija: High-Performance System Design 34 Complex Multi-path Optimization If each path has internal branching, ba and bb are as follows g 0 b0 g1b1 g 2 b2 Cout1 g 3b3 g 4 b4 g 5 b5 Cout 2 ba g 0 b0 g1b1 g 2 b2 Cout1 g 3b3 g 4 b4 g 5 b5 Cout 2 g 0 b0 g1b1 g 2 b2 Cout1 bb g 3b3 g 4 b4 g 5 b5 Cout 2 • Note: This solution and previous solution differ from that described in LE book (which is incorrect) Fall 2004 Prof. V. G. Oklobdzija: High-Performance System Design 35
© Copyright 2026 Paperzz