4.4 Blocking Unreplicated 2k Factorial Designs • If data for every combination of factor levels cannot be collected under identical experimental conditions for an unreplicated 2k design, then blocks containing only a fraction of the 2k experimental runs should be formed. • For example, due to time constraints, the design is often fractionated into blocks such that each block of experimental runs will correspond to different time units (e.g, days or work shifts). • The main problem is the assignment of the factor level combinations to blocks so that the main effects and the interaction effects of interest are not confounded with blocks. • When a block effect is completely confounded with a main effect or an interaction effect, calculation of the two effects, as well as the sum of squares, are identical. This means we cannot separate the effect estimates in the statistical analysis. • The common blocking method for 2k designs is to confound blocks with certain high order interactions. We will show how to form 2, 4, 8, . . . blocks from an unreplicated 2k design. • Textbooks describe two equivalent ways to construct the blocks: using defining contrasts and using principal blocks. I will not be covering these topics because there is a simpler way. 4.4.1 The Unreplicated 2k Design in Two Blocks of Size 2k−1 • When fractionating an unreplicated 2k design into 2 blocks of size 2k−1 , it is recommended to confound the 2 block effects with the k−factor interaction (the highest order interaction). – For a 23 design, we would create 2 blocks of size 4 such that the block effect is confounded with the (or ) interaction. – For a 24 design, we would create 2 blocks of size 4 such that the block effect is confounded with the (or ) interaction. • After the two blocks are formed, we randomly assign block to the experimental blocking variable. If blocks are two days, then we randomly assign Block 1 to either day 1 or day 2. • Then, once blocks are assigned, you randomize the order of the 2k−1 rows within each block. • Important: When you include blocks in the model, you cannot also include the highest-order interaction because of complete confounding. Therefore, you cannot separate any blocking effect from the highest-order interaction effect. Confounding the hightest-order interaction in a 2k design when forming 2 blocks: 1. Generate a table containing the 2k possible combinations of + and − signs for the k factors. Let the columns be labeled A, B, C, . . .. 2. Create a column for the highest-order interaction. Multiply the entries in the A, B, C, . . . columns for each row. This will yield either a + or − sign. 3. Put all rows containing a + sign into the first block, and all rows containing a − sign into the second block. 58 Example: The following table summarizes the eight treatment combinations and the signs for calculating effects in the 23 design along with a column for the highest order interaction (ABC). A − + − + − + − + (1) a b ab c ac bc abc B − − + + − − + + C − − − − + + + + ABC − + + − + − − + a b c abc (1) ab ac bc A + − − + − + + − B − + − + − + − + C − − + + − − + + ABC Block 1 1 1 1 2 2 2 2 Example: The following table summarizes the 16 treatment combinations and the signs for calculating effects in the 24 design along with a column for the highest order interaction (ABCD). (1) a b ab c ac bc abc d ad bd abd cd acd bcd abcd 4.4.2 A − + − + − + − + − + − + − + − + B − − + + − − + + − − + + − − + + C − − − − + + + + − − − − + + + + D − − − − − − − − + + + + + + + + ABCD + − − + − + + − − + + − + − − + (1) ab ac bc ad bd cd abcd a b c abc d abd acd bcd A − + + − + − − + + − − + − + + − B − + − + − + − + − + − + − + − + C − − + + − − + + − − + + − − + + D − − − − + + + + − − − − + + + + ABCD Block 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 The Unreplicated 2k Design in Four Blocks of Size 2k−2 Confounding two interactions in a 2k design when forming 4 blocks: 1. Select two interactions as block generators. You can use the table of suggested generators in the text and notes. 2. Generate a table containing the 2k possible combinations of + and − signs for the k factors. Let the columns be labeled A, B, C, . . .. 3. Create two columns for the two generating interactions. Multiply the entries in the A, B, C, . . . columns for each row. This will yield either a + or − sign in each of the two generator columns. 4. There are four possible + and − sign combinations: (++), (+−), (−+), and (−−). Put all rows containing a (++) into the Block 1, (+−) into the Block 2, (−+) into the Block 3, and (−−) into the Block 4. 59 Example: The following table summarizes the 16 treatment combinations and the signs for calculating effects in the 24 design along with two column for the two interaction generators (ABC and BCD). (1) a b ab c ac bc abc d ad bd abd cd acd bcd abcd A − + − + − + − + − + − + − + − + B − − + + − − + + − − + + − − + + C − − − − + + + + − − − − + + + + D ABC BCD − − − − + − − + + − + − − + + − + − − − − − + − + − + + + + + + − + − − + + − + − − + − + + + + b c ad abcd a abc bd cd ab ac d bcd (1) bc abd acd A − − + + + + − − + + − − − − + + B + − − + − + + − + − − + − + + − C − + − + − + − + − + − + − + − + D ABC BCD Block − 1 − 1 + 1 + 1 − 2 − 2 + 2 + 2 − 3 − 3 + 3 3 + − 4 − 4 + 4 + 4 + + + + − − − − − − − − + + + + • After the four blocks are formed, we randomly assign blocks to the experimental blocking variable. If blocks are four days, then we randomly assign Blocks 1 to 4 to Days 1 to 4. • Then, once blocks are assigned, you randomize the order of the 2k−2 rows within each block. • Note that we formed 4 blocks (3 d.f.) formed from two interaction effects (2 d.f.). Thus, there is one additional effect confounded with blocks. This effect is the generalized interaction of the two generating interactions. • The generalized interaction (GI) is the product of the two generating interactions. – In this example, the GI is ABC × BCD = = . Note that if we have an 2 2 even power (e.g. B or C ) we get a column of all ones, and for an odd power we get the original column back (e.g. B = B 3 = B 5 ). – In the column we get all + or − within a block. – If you select any two of the three interactions (ABC, BCD, the same blocks. ), then you would form • Important: When you include 4 blocks in the model, you cannot also include any of the three interactions (2 generators and the GI) because of complete confounding. Therefore, you cannot separate any blocking effect from the these particular interaction effects. – In this example, we cannot include ABC, BCD, or in the model if blocks are also in the model. Or, in the regression model, we cannot include 4.4.3 An Example of Good vs Poor Blocking • In the following example, the goal was to run a 24 design in four blocks of size 4. It is impossible to find a blocked design that allows estimation of all two-factor interactions. However, it is possible to include 5 of the 6 two-factor interactions in the blocking model. 60 • In the “Good Blocking Example”, blocks are confounded with the ABC, ACD, and BD effects. It is “good” because the experimenter did not expect/believe a B ∗ D interaction would be significant. Thus, the design allowed it be the one two-factor interaction confounded with blocks. • In the “Poor Blocking Example”, the blocks are confounded with the BCD, ABD, and AC effects. It is “bad” because the experimenter did not take the time to plan which two-factor interaction should be confounded with blocks. In this case, the A ∗ C effect may be important but cannot be included in the model with blocks. GOOD BLOCKING EXAMPLE OF A 2^4 DESIGN IN 4 BLOCKS OF SIZE 4 ASSIGNMENTS TO BLOCKS -- SORTED BY BLOCK Obs 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 A -1 1 1 -1 -1 1 1 -1 1 -1 -1 1 1 -1 -1 1 B -1 -1 1 1 1 1 -1 -1 1 1 -1 -1 -1 -1 1 1 C -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 D -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 ABC -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1 1 1 1 1 ACD -1 -1 -1 -1 -1 -1 -1 -1 1 1 1 1 1 1 1 1 BD 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 1 1 1 1 BLOCK 1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4 ANALYSIS WITH BLOCKS The GLM Procedure Dependent Variable: YIELD Source DF Sum of Squares Mean Square F Value Pr > F Model Error Corrected Total 12 3 15 283.2500000 8.5000000 291.7500000 23.6041667 2.8333333 8.33 0.0534 R-Square 0.970865 Source DF BLOCK A B C D A*B A*C A*D B*C C*D 3 1 1 1 1 1 1 1 1 1 Coeff Var 9.687775 Type III SS 4.250 <-81.000 1.000 16.000 42.250 2.250 72.250 64.000 0.250 0.000 Level of BLOCK 1 2 3 4 Root MSE 1.683251 Mean Square 1.4167 81.0000 1.0000 16.0000 42.2500 2.2500 72.2500 64.0000 0.2500 0.0000 YIELD Mean 17.37500 F Value Pr > F 0.50 28.59 0.35 5.65 14.91 0.79 25.50 22.59 0.09 0.00 0.7082 0.0128 0.5943 0.0979 0.0307 0.4385 0.0150 0.0177 0.7858 1.0000 <- SS = 4.250 < < < < < No B*D interaction in the model. ----------YIELD---------N 4 4 4 4 Mean 17.000 18.000 16.750 17.750 Std Dev 5.09901951 5.29150262 4.99165971 4.11298756 61 < Relatively small < block-to-block < variability. < GOOD BLOCKING EXAMPLE OF A 2^4 DESIGN IN 4 BLOCKS OF SIZE 4 ANALYSIS WITH BLOCKS AND WITH ABC ACD BD The GLM Procedure Dependent Variable: YIELD Source DF Sum of Squares Mean Square F Value Pr > F Model Error Corrected Total 12 3 15 283.2500000 8.5000000 291.7500000 23.6041667 2.8333333 8.33 0.0534 R-Square 0.970865 Source DF A B C D A*B A*C A*D B*C C*D B*D A*B*C A*C*D BLOCK 1 1 1 1 1 1 1 1 1 1 1 1 0 Coeff Var 9.687775 Type I SS Root MSE 1.683251 Mean Square 81.000 1.000 16.000 42.250 2.250 72.250 64.000 0.250 0.000 0.000 <4.000 <0.250 <0.000 81.0000 1.0000 16.0000 42.2500 2.2500 72.2500 64.0000 0.2500 0.0000 0.0000 4.0000 0.2500 . YIELD Mean 17.37500 F Value Pr > F 28.59 0.35 5.65 14.91 0.79 25.50 22.59 0.09 0.00 0.00 1.41 0.09 . 0.0128 0.5943 0.0979 0.0307 0.4385 0.0150 0.0177 0.7858 1.0000 1.0000 0.3203 0.7858 . < < < < Combined SS = 4.250 = Block SS in previous model. SAS Code for Good Blocking Example *****************************************************************; *** A 2**4 DESIGN: GOOD BLOCKING EXAMPLE (4 BLOCKS OF SIZE 4) ***; *****************************************************************; DATA IN; DO D = -1 TO 1 BY 2; DO C = -1 TO 1 BY 2; DO B = -1 TO 1 BY 2; DO A = -1 TO 1 BY 2; INPUT YIELD @@; ABC = A * B * C; * GENERATOR 1; ACD = A * C * D; * GENERATOR 2; BD = B * D; * GENERALIZED INTERACTION; IF ABC=-1 AND ACD=-1 THEN BLOCK=1; IF ABC= 1 AND ACD=-1 THEN BLOCK=2; IF ABC=-1 AND ACD= 1 THEN BLOCK=3; IF ABC= 1 AND ACD= 1 THEN BLOCK=4; OUTPUT; END; END; END; END; LINES; 12 18 13 16 17 15 20 15 10 25 13 24 19 21 17 23 ; TITLE ’GOOD BLOCKING EXAMPLE OF A 2^4 DESIGN IN 4 BLOCKS OF SIZE 4’; TITLE2 ’EFFECTS CONFOUNDED WITH BLOCKS: ABC, ACD, BD’; PROC SORT DATA=IN; BY BLOCK; PROC PRINT DATA=IN; VAR A B C D ABC ACD BD BLOCK; TITLE2 "ASSIGNMENTS TO BLOCKS -- SORTED BY BLOCK"; ***********************************************************; *** FOUR BLOCK ANALYSIS: POOL HIGHER ORDER INTERACTIONS ***; *** CONFOUNDED WITH BLOCKS: ABC ACD BD ***; ***********************************************************; PROC GLM DATA=IN; CLASS A B C D BLOCK; MODEL YIELD = BLOCK A B C D A*B A*C A*D B*C C*D / SS3; MEANS BLOCK; TITLE2 "ANALYSIS WITH BLOCKS"; PROC GLM DATA=IN; CLASS A B C D BLOCK; MODEL YIELD = A B C D A*B A*C A*D B*C C*D B*D A*B*C A*C*D BLOCK / SS1; TITLE2 "ANALYSIS WITH BLOCKS AND WITH ABC ACD BD"; RUN; 62 Bad Blocking Example (BCD, ABD, and AC confounded with Blocks) BAD BLOCKING EXAMPLE OF A 2^4 DESIGN IN 4 BLOCKS OF SIZE 4 ASSIGNMENTS TO BLOCKS -- SORTED BY BLOCK Obs 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 A -1 1 -1 1 1 -1 1 -1 1 -1 1 -1 -1 1 -1 1 B -1 1 1 -1 1 -1 -1 1 -1 1 1 -1 1 -1 -1 1 C -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 D -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 BCD -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1 1 1 1 1 ABD -1 -1 -1 -1 -1 -1 -1 -1 1 1 1 1 1 1 1 1 AC 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 1 1 1 1 BLOCK 1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4 ANALYSIS WITH BLOCKS The GLM Procedure Dependent Variable: YIELD Source DF Sum of Squares Mean Square F Value Pr > F Model Error Corrected Total 12 3 15 283.5000000 8.2500000 291.7500000 23.6250000 2.7500000 8.59 0.0512 Root MSE 1.658312 YIELD Mean 17.37500 R-Square 0.971722 Source Coeff Var 9.544244 DF Type III SS BLOCK A B C D A*B A*D B*C B*D C*D 3 1 1 1 1 1 1 1 1 1 Mean Square 76.750 <-- 25.5833 81.000 81.0000 1.000 1.0000 16.000 16.0000 42.250 42.2500 2.250 2.2500 64.000 64.0000 0.250 0.2500 0.000 0.0000 0.000 0.0000 Level of BLOCK 1 2 3 4 F Value 9.30 29.45 0.36 5.82 15.36 0.82 23.27 0.09 0.00 0.00 Pr > F 0.0498 <-- Is this due 0.0123 to block 0.5890 effects or to 0.0948 confounded 0.0295 effects? 0.4324 0.0170 0.7827 1.0000 1.0000 ----------YIELD---------N 4 4 4 4 Mean 15.250 18.750 20.250 15.250 Std Dev 4.03112887 4.19324854 2.62995564 5.56027577 < < < < Much larger block-to-block variability than previous example. BAD BLOCKING EXAMPLE OF A 2^4 DESIGN IN 4 BLOCKS OF SIZE 4 ANALYSIS WITH BLOCKS AND WITH BCD ABD AD The GLM Procedure Dependent Variable: YIELD Source DF Sum of Squares Mean Square F Value Pr > F Model Error Corrected Total 12 3 15 283.5000000 8.2500000 291.7500000 23.6250000 2.7500000 8.59 0.0512 Root MSE 1.658312 YIELD Mean 17.37500 R-Square 0.971722 Coeff Var 9.544244 63 Source DF Type I SS A B C D A*B A*D B*C B*D C*D A*C B*C*D A*B*D BLOCK 1 1 1 1 1 1 1 1 1 1 1 1 0 81.000 1.000 16.000 42.250 2.250 64.000 0.250 0.000 0.000 72.250 2.250 2.250 0.000 Mean Square 81.0000 1.0000 16.0000 42.2500 2.2500 64.0000 0.2500 0.0000 0.0000 72.2500 2.2500 2.2500 . F Value 29.45 0.36 5.82 15.36 0.82 23.27 0.09 0.00 0.00 26.27 0.82 0.82 . Pr > F 0.0123 0.5890 0.0948 0.0295 0.4324 0.0170 0.7827 1.0000 1.0000 0.0144 0.4324 0.4324 . < < < < Combined SS = 76.750 = Block SS in previous model. SAS Code for Bad Blocking Example: DM ’LOG;CLEAR;OUT;CLEAR;’; OPTIONS NODATE NONUMBER PS=60 LS=78; ODS LISTING; *****************************************************************; *** A 2**4 DESIGN: BAD BLOCKING EXAMPLE (4 BLOCKS OF SIZE 4) ***; *****************************************************************; DATA IN; DO D = -1 TO 1 BY 2; DO C = -1 TO 1 BY 2; DO B = -1 TO 1 BY 2; DO A = -1 TO 1 BY 2; INPUT YIELD @@; BCD = B * C * D; * GENERATOR 1; ABD = A * B * D; * GENERATOR 2; AC = A * C; * GENERALIZED INTERACTION; IF BCD=-1 AND ABD=-1 THEN BLOCK=1; IF BCD= 1 AND ABD=-1 THEN BLOCK=2; IF BCD=-1 AND ABD= 1 THEN BLOCK=3; IF BCD= 1 AND ABD= 1 THEN BLOCK=4; OUTPUT; END; END; END; END; LINES; 12 18 13 16 17 15 20 15 10 25 13 24 19 21 17 23 ; TITLE ’BAD BLOCKING EXAMPLE OF A 2^4 DESIGN IN 4 BLOCKS OF SIZE 4’; TITLE2 ’EFFECTS CONFOUNDED WITH BLOCKS: BCD, ABD, AC’; PROC SORT DATA=IN; BY BLOCK; PROC PRINT DATA=IN; VAR A B C D BCD ABD AC BLOCK; TITLE2 "ASSIGNMENTS TO BLOCKS -- SORTED BY BLOCK"; **********************************************************; *** FOUR BLOCK ANALYIS: POOL HIGHER ORDER INTERACTIONS ***; *** CONFOUNDED WITH BLOCKS: BCD ABD AC ***; **********************************************************; PROC GLM DATA=IN; CLASS A B C D BLOCK; MODEL YIELD = BLOCK A B C D A*B A*D B*C B*D C*D / SS3; MEANS BLOCK; TITLE2 "ANALYSIS WITH BLOCKS"; PROC GLM DATA=IN; CLASS A B C D BLOCK; MODEL YIELD = A B C D A*B A*D B*C B*D C*D A*C B*C*D A*B*D BLOCK / SS1; TITLE2 "ANALYSIS WITH BLOCKS AND WITH BCD ABD AD"; RUN; 64 65 4.4.4 The Unreplicated 2k Design in 2p Blocks of Size 2k−p Goal: Generalize the results for the generation of 2 blocks of size 2k−1 or 4 blocks of size 2k−2 to the general case of generating a total 2p blocks of size 2k−p . Confounding p interactions in a 2k design when forming 2p blocks: 1. Select p interactions as block generators. You can use the table of suggested generators in the text and notes. 2. Generate a table containing the 2k possible combinations of + and − signs for the k factors. Let the columns be labeled A, B, C, . . .. 3. Create p columns for the p generating interactions. Multiply the entries in the A, B, C, . . . columns for each row. This will yield either a + or − sign in each of the p generator columns. 4. There are 2p possible + and − sign combinations: (±1, ±1, . . . , ±1). Put all rows containing the same sequence of ±1 values into the same block (which will form 2p blocks of size 2k−p ). Example: The following table summarizes the 32 treatment combinations and the signs for calculating effects in the 25 design along with three columns for the three interaction generators (ABE, BCE, and CDE). (1) a b ab c ac bc abc d ad bd abd cd acd bcd abcd e ae be abe ce ace bce abce de ade bde abde cde acde bcde abcde A − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + B − − + + − − + + − − + + − − + + − − + + − − + + − − + + − − + + C − − − − + + + + − − − − + + + + − − − − + + + + − − − − + + + + D − − − − − − − − + + + + + + + + − − − − − − − − + + + + + + + + E ABE BCE CDE − − − − − + − − − + + − − − + − − + + − − + + + − + − + − − − + − − − + − + − + + + + − − − + + − − + − − + + − + − − − − − − − + + + + + − + + + − − + + + − + + + − − + − − − + − + − + + + − + + + − + − + − + − − − + + − − + + − + + − − + + − + + + + + + 66 The blocking structure (plus the generalized interactions): e ac bd abcde b acd abce de bc ad abe cde a bcd ce abde c abd ae bcde ab cd bce ade abc d be acde (1) abcd ace bde A − + − + − + + − − + + − + − − + − + + − + − − + + − − + − + + − B − − + + + − + − + − + − − + − + − + − + + − + − + − + − − + − + C − + − + − + + − + − − + − + + − + − − + − + + − + − − + − + + − D − − + + − + − + − + − + − + − + − + − + − + − + − + − + − + − + E ABE BCE CDE Block + + + 1 − + + 1 + 1 − + + + + 1 − + + 2 − + + 2 + 2 + + + + + 2 − + − 3 − 3 − + + + − 3 − 3 + + − + − 4 − 4 − + + + − 4 + + − 4 − − + 5 − − + 5 + − + 5 + − + 5 − − + 6 + 6 − − + 6 + − + − + 6 − − − 7 − − − 7 + − − 7 − 7 + − − − − 8 − − − 8 + − − 8 − 8 + − + + + + + + + + − − − − − − − − − − − − − − − − + + + + + + + + + + + + − − − − − − − − + + + + + + + + − − − − − − − − + + + + + + + + − − − − + + + + − − − − − − − − + + + + − − − − + + + + + + + + − − − − − − − − + + + + − − − − + + + + + + + + − − − − • After the 2p blocks are formed, we randomly assign blocks to the experimental blocking variable. If blocks are 2p days, then we randomly assign Blocks 1 to 2p to Days 1 to 2p . • Then, once blocks are assigned, you randomize the order of the 2k−p rows within each block. • Note that we formed 8 blocks (7 d.f.) formed from three interaction effects (3 d.f.). Thus, there are 4 additional effects confounded with blocks. These effects are the generalized interaction of the three generating interactions. • The generalized interactions (GIs) are the products of each combination of two or more generating interactions. 67 For this example of a 25 design in 8 blocks of size 4: • There are 7 df for blocks, but only 3 generating interactions (ABE, BCE, and CDE). This means there are 4 generalized interactions to account for the 4 remaining df. • These generalized interactions are found by finding the effect resulting from multiplication of each combination of 2 or 3 generators. (ABE)(BCE) = AB 2 CE 2 = (ABE)(CDE) = ABCDE 2 = (BCE)(CDE) = BC 2 DE 2 = (ABE)(BCE)(CDE) = AB 2 C 2 DE 3 = = • In each of the GI columns we get all + or − within a block. If you select any three of the seven interactions (ABE, BCE, CDE ), then you would form the same 8 blocks (but just labelled 1 to 8 in a different order). • The 7 df for blocks corresponds to the 7 df associated with the ABE, BCE, CDE interaction effects. Therefore, none of these 7 interactions can be included in a model with blocks. • This means the ”biggest” model we can fit having the 8 defined blocks contains all main effects (A, B, C, D, E) and all two-way and higher interactions except for those 7 just listed. • The 7 df for blocks corresponds 7 df associated with these 7 effects. Therefore, the terms cannot be included in a regression model with blocks. 68 4.4.5 An Example of Using SAS to Block a 2k Design ********************************************; *** GENERATE A 2**5 DESIGN WITH 4 BLOCKS ***; ********************************************; PROC FACTEX; FACTORS X1 X2 X3 X4 X5 / NLEV=2; <-- List the factors SIZE DESIGN=32; <-- Design size BLOCKS NBLOCKS=4; <-- Number of blocks EXAMINE CONFOUNDING DESIGN; MODEL EST=(X1|X2|X3|X4|X5@2); <-- Specify model OUTPUT OUT = BLOCK54 X1 CVALS=(’LOW’ ’HIGH’) +--> X2 CVALS=(’TOP’ ’BOT’) | Specify levels X3 NVALS=(0 100) | CVAL if categorical X4 NVALS=(-2 2) | NVAL if numerical X5 CVALS=(’NEW’ ’OLD’); +--> TITLE ’GENERATION OF A 2**5 DESIGN IN 4 BLOCKS’; PROC PRINT DATA=BLOCK54; RUN; ============================================================= GENERATION OF A 2**5 DESIGN IN 4 BLOCKS ============================================================= Design Points Experiment Number X1 X2 X3 X4 X5 Block -----------------------------------------------------------1 -1 -1 -1 -1 -1 2 2 -1 -1 -1 -1 1 3 3 -1 -1 -1 1 -1 3 4 -1 -1 -1 1 1 2 5 -1 -1 1 -1 -1 1 6 -1 -1 1 -1 1 4 7 -1 -1 1 1 -1 4 8 -1 -1 1 1 1 1 9 -1 1 -1 -1 -1 1 10 -1 1 -1 -1 1 4 11 -1 1 -1 1 -1 4 12 -1 1 -1 1 1 1 13 -1 1 1 -1 -1 2 14 -1 1 1 -1 1 3 15 -1 1 1 1 -1 3 16 -1 1 1 1 1 2 17 1 -1 -1 -1 -1 4 18 1 -1 -1 -1 1 1 19 1 -1 -1 1 -1 1 20 1 -1 -1 1 1 4 21 1 -1 1 -1 -1 3 22 1 -1 1 -1 1 2 23 1 -1 1 1 -1 2 24 1 -1 1 1 1 3 25 1 1 -1 -1 -1 3 26 1 1 -1 -1 1 2 27 1 1 -1 1 -1 2 28 1 1 -1 1 1 3 29 1 1 1 -1 -1 4 30 1 1 1 -1 1 1 31 1 1 1 1 -1 1 32 1 1 1 1 1 4 69 GENERATION OF A 2**5 DESIGN IN 4 BLOCKS Block Pseudo-factor Confounding Rules [B1] = X2*X3*X4*X5 <--- Generators: BCDE , ADE [B2] = X1*X4*X5 ABC = GI OBS 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 BLOCK 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 X1 LOW LOW LOW LOW HIGH HIGH HIGH HIGH LOW LOW LOW LOW HIGH HIGH HIGH HIGH LOW LOW LOW LOW HIGH HIGH HIGH HIGH LOW LOW LOW LOW HIGH HIGH HIGH HIGH X2 TOP TOP BOT BOT TOP TOP BOT BOT TOP TOP BOT BOT TOP TOP BOT BOT TOP TOP BOT BOT TOP TOP BOT BOT TOP TOP BOT BOT TOP TOP BOT BOT X3 100 100 0 0 0 0 100 100 0 0 100 100 100 100 0 0 0 0 100 100 100 100 0 0 100 100 0 0 0 0 100 100 X4 -2 2 -2 2 -2 2 -2 2 -2 2 -2 2 -2 2 -2 2 -2 2 -2 2 -2 2 -2 2 -2 2 -2 2 -2 2 -2 2 70 X5 NEW OLD NEW OLD OLD NEW OLD NEW NEW OLD NEW OLD OLD NEW OLD NEW OLD NEW OLD NEW NEW OLD NEW OLD OLD NEW OLD NEW NEW OLD NEW OLD
© Copyright 2026 Paperzz