Switch and routers architectures: cantor networks CF minimum complexity cantor networks Consider a Cantor network built with m parallel Benes networks. Let A (κ) (with 1 6 κ 6 log2 (N)) be the number of 2 × 2 modules (in the worst case) in the Benes network reachable without rearrangement at stage κ by an input of the Cantor network. Then: A (1) = m A (2) = 2 · A (1) − 1 A (3) = 2 · A (2) − 2 A (4) = 2 · A (3) − 4 Thus: A (κ) = 2 · A (κ − 1) − 2κ−2 κ = 2 , 3 , · · · , log2 (N) because log2 (N) is the middle stage of the Benes networks. Going on: A (κ) = 2 · A (κ − 1) − 2κ−2 A (κ − 1) = 2 · A (κ − 2) − 2κ−3 A (κ − 2) = 2 · A (κ − 3) − 2κ−4 Putting all together in the first one: h i A (κ) = 2 · 2 · 2 · A (κ − 3) − 2κ−4 − 2κ−3 − 2κ−2 = h i = 2 · 4 · A (κ − 3) − 2κ−3 − 2κ−3 − 2κ−2 = = 8 · A (κ − 3) − −2κ−2 − 2κ−2 − 2κ−2 = = 2y · A (κ − y) − y · 2κ−2 We need that A (κ − y) = A (1), thus: κ−y = 1 =⇒ y = κ−1 This implies that: A (κ) = 2κ−1 · A (1) − (κ − 1) · 2κ−2 Since the maximum κ = log2 (N): A log2 (N) = 2log2 (N)−1 · A (1) − (log2 (N) − 1) · 2log2 (N)−2 = N N · A (1) − (log2 (N) − 1) · = 2 4 N N = · m − (log2 (N) − 1) · 2 4 = 1 Switch and routers architectures: cantor networks CF Looking at the network, from the beginning and from the end, we can reach A log2 (N) modules; in the middle stage, by construction of a Benes network, we have m · (N/2) modules: we need to find a free common module. Therefore we impose: m· N < 2 · A log2 (N) 2 By substituting the value of A log2 (N) computed before: N N N m· = < 2· · m − (log2 (N) − 1) · 2 2 4 N N m· < N · m − (log2 (N) − 1) · = 2 2 m · N < 2N · m − (log2 (N) − 1) · N = m · (N − 2N) < −(log2 (N) − 1) · N = − m · N < −(log2 (N) − 1) · N = m > log2 (N) − 1 2
© Copyright 2026 Paperzz