Linear Regression – General Linear Tests Cobb-Douglas Production Function (Multiplicative Form) Source: C.W. Cobb and P.H. Douglas (1928). “A Theory of Production”, American Economic Review Vol. 18 (Supplement) pp. 139-165. Linear Regression Model with Constraints Y X subject to K T m K T m 0 where: Y n 1 X n p ' p ' 1 K T k p ' minimize L* Y X * Y X * 2 T K T * m T Y T Y 2Y T X * *T X T X * 2 T K T * 2 T m with respect to *, where k 1: set L T T 2 X Y 2 X X * 2 K 0 * set ^ L T T 2 K * m 0 K * m ^ T X X K * X T Y T 0 m K ^ X X * K X TY T Solving for Constrained Regression Coefficients A Note (Assuming A is full rank): A 11 A21 A12 A22 A111 I A12 F2 A21 A111 A111 A12 F2 1 A where: F2 A22 A21 A111 A12 F2 A21 A111 F2 1 X X T K T 1 1 1 T 1 T T X X I K K X X K KT X T X K 1 0 1 1 T T T T K X X K K X X 1 Note: F2 0 K T X T X K 1 KT X T X K 1 ^ 1 1 * X T X I K KT X T X K 1 1 1 1 1 K K K T T X X X X T T 1 K 1 K 1 1 1 1 1 K T X T X X TY X T X K K T X T X K X T X X TY X T X K K T X T X K 1 K KT X T X K KT X T X K X X T 1 1 1 1 1 1 1 1 T 1 T T T T ^ X X I K K X X K K X X * 1 1 1 KT X T X K KT X T X 1 T 1 X X X TY m 1 m K T X T X X TY m X T X K K T X T X K 1 ^ 1 1 1 T ^ K m Error Sum of Squares for Constrained Model ^ ^ ^ ^ ^ ^ e* Y X * Y X X * e X * where e Y X and SS Residual Complete eT e ^ T ^ ^ ^ ^ SS ResidualReduced e * e* e X * e X * T T T ^ ^ ^ ^ T ^ T ^ e e 2 * X e * X X * Note: X T e X T I P Y 0 T T ^ ^ ^ T ^ SS ResidualReduced e e * X X * T ^ 1 1 ^ with * X T X K K T X T X K 1 SS ResidualReduced SS ResidualComplete K X X K K X X X X X X K K X X K m K X X K K X X K K X X K K m m K X X K K m Q T T ^ K m KT KT T ^ K m T ^ T ^ T 1 1 T T T 1 1 T T 1 1 T 1 T T T T ^ T 1 1 T T T T 1 1 T 1 T ^ 1 T ^ K m Application to (Multiplicative) Cobb-Douglas Production Function • Annual Data 1899-1922 (Indexed to 1899) • Dependent Variable: Q ≡ Quantity Produced • Independent Variables: K ≡ Capital L ≡ Labor Model: Q K K L L 0 K , L 1 E 1 ln Q ln K ln K L ln L ln Q* * K K * L L * * Note (Ignoring Error Term): Elasticity of Q wrt K : K Q Q Q K K K 1 L K L K K L K K K Q K L Q Q Q L L K L 1 K L K L L L L Q K L Elasticity of Scale: = K L K L Elasticity of Q wrt L: L K L 1 Constant Returns to Scale (1% Change in all inputs = 1% Change in output) Data, Hypothesis, and OLS Estimator year 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 Q 100 101 112 122 124 122 143 152 151 126 155 159 153 177 184 169 189 225 227 223 218 231 179 240 K 100 107 114 122 131 138 149 163 176 185 198 208 216 226 236 244 266 298 335 366 387 407 417 431 L 100 105 110 118 123 116 125 133 138 121 140 144 145 152 154 149 154 182 196 200 193 193 147 161 ln(Q) 4.6052 4.6151 4.7185 4.8040 4.8203 4.8040 4.9628 5.0239 5.0173 4.8363 5.0434 5.0689 5.0304 5.1761 5.2149 5.1299 5.2417 5.4161 5.4250 5.4072 5.3845 5.4424 5.1874 5.4806 ln(K) 4.6052 4.6728 4.7362 4.8040 4.8752 4.9273 5.0039 5.0938 5.1705 5.2204 5.2883 5.3375 5.3753 5.4205 5.4638 5.4972 5.5835 5.6971 5.8141 5.9026 5.9584 6.0088 6.0331 6.0661 ln(L) 4.6052 4.6540 4.7005 4.7707 4.8122 4.7536 4.8283 4.8903 4.9273 4.7958 4.9416 4.9698 4.9767 5.0239 5.0370 5.0039 5.0370 5.2040 5.2781 5.2983 5.2627 5.2627 4.9904 5.0814 * K H 0 : K L 1 L K T 0 1 1 m 1 X'X 24 128.5556 119.1054 128.5556 693.4555 639.9174 119.1054 639.9174 592.0168 X'Y 121.8561 655.4095 605.9387 INV(X'X) 55.80062 5.912343 -17.617 5.912343 1.194064 -2.48016 -17.617 -2.48016 6.226807 Beta-hat -0.17731 0.233053 0.807278 Y'Y SS(Model) SS(Res) S^2 620.3713 620.3003 0.070982 0.003549 Constrained Estimator and F-test INV(X'X)K -11.7047 -1.28609 3.746651 INV(K'XXIK) 0.406412 B*-B 0.191854 0.021081 -0.06141 Beta-hat* 0.014545 0.254134 0.745866 K'Beta-m 0.040332 H0 : K T m 0 H A : K T m 0 TS : Fobs INV(X'X)K -11.7047 -1.28609 3.746651 INV(K'XXIK) 0.406411632 B*-B 0.191854 0.021081 -0.06141 Beta-hat* 0.014544619 0.254134156 0.745865844 H0 Q k ~ Fk ,n p ' MS ResidualComplete k 1, n p ' 24 3 21 K'Beta-m 0.040332 Note: SS Residual Reduced T Y'Y B*'X'Y B*'X'XB SS(Res*) Q 620.3713 620.283291 620.2668998 0.071643 0.000661 Y'Y SS(Model) SS(Res) F_obs F(.05) P-value 620.3713 620.300343 0.070981638 0.195583 4.324794 0.662831 ^ ^ Y X * Y X * ^ ^ ^ Y T Y 2 *T X T Y *T X T X * 1 ^ * X ' X X 'Y t-test/Confidence Interval (k=1 Hypothesis) Parameter: K ^ Estimator: K T T 1 T ^ ^ T V K K V K 2K T X T X K ^ 1 T ^ ^ T V K K V K s2K T X T X K H0 : K T m H A : K T m ^ ^ TS : tobs KT m V KT ^ ^ ^ KT m H0 s2 K T X T X K 1 ~ tn p ' 1 100% Confidence Interval: K t /2,n p ' s 2 K T X T X K T 1 ^ K'Beta-m S^2 K'*INV(X'X)K V(KB) SE(KB) 0.040332 0.00338008 2.460559494 0.008317 0.091197 t_obs t(.025,21) P-value 0.442248 2.07961384 0.662830702 K'Beta K'Beta Lower Upper 0.850677 1.229986
© Copyright 2026 Paperzz