Numerical Computing 1 Discrete Points x0 , y0 , x1, y1 ,......, xn1, yn1 , xn , yn Find f xi where 0<= i <= n Solution Given Step1: Get general formula f n (x) for the discrete points Step2: Differentiate f n (x) to get f n x Step3: Substitute With xi in f n x 2 n n f n ( x ) Li ( x ) f ( xi ) [ xx j j 0 ( n 1)! i 0 ] f n 1 ( ( x )) n x xj j 0 Where Error = [ ( n 1)! ] f n 1 ( ( x )) th and ‘ n ’ in f n (x) stands for the n order polynomial that approximates the function f (x) given at (n 1) data points as x0 , y0 , x1 , y1 ,......, xn1 , yn1 , xn , yn , and Li ( x) n x xj x x j 0 j i i j Li (x) a weighting function that includes a product of (n 1) terms with terms of ji omitted. 3 Then to find the first derivative, one can differentiate f n x once, and so on for other derivatives. For example, the second order Lagrange polynomial passing through x0 , y0 , x1, y1 , x2 , y2 is f 2 x x x1 x x2 f x x x0 x x2 f x x x0 x x1 f x x0 x1 x0 x2 0 x1 x0 x1 x2 1 x2 x0 x2 x1 2 n [ xx j 0 (n 1)! j ] f n 1 ( ( x)) Differentiating equation (2) gives Three Point Formula 4 f 2x L0 ( x) f x0 L1( x) f x1 L2 ( x) f x2 n Dx[ xx j 0 (n 1)! This [ f n j ] f n 1 ( ( x)) [ term equals n ( ( x)) ] xi x j (n 1)! j 0 n 1 xx j 0 (n 1)! j ] Dx[ f n 1 This ( ( x))] term equals zero WHY?? i j WHY?? 5 x x1 x x2 x 2 x1 x x2 x x1 x2 L0 ( x) x0 x1 x0 x2 x0 x1 x0 x2 2 x x1 x2 L0 ( x) x0 x1 x0 x2 2 x x0 x2 L1( x) x1 x0 x1 x2 2 x x0 x1 L2 ( x) x2 x0 x2 x1 6 2x x x 2x x x f x f x f x x x x x x x x x 2x x x 1 f x f ( ) x x x x x x 3! j 2 1 2 j j 0 2 0 0 1 0 1 2 1 0 1 2 2 j 0 1 3 2 2 0 2 Three 1 j j i 0 j i Point Formula For unequally discrete points 7 i Eq1 To become specially for equally spaced points X1 = X0 + h X2 = X0 + 2h Where h is the step size Xj may be X0 or X1 or X2 8 Assume Xj=X0 , X1= X0+h, X2= X0+2h then Substitute in general rule Eq 1 2 x0 x0 h x0 2h f 2 x0 f x0 x0 x0 h x0 x0 2h 2 x0 x0 x0 2h f x1 x0 h x0 x0 h x0 2h 2 x0 x0 x0 h f x2 x0 2h x0 x0 2h x0 h 1 3 f ( 0 ) ( x0 x0 h)( x0 x0 2h) 3! 9 3h 2h f 2 x0 f x0 f x1 2 2 2h h f x 1 2 2 2h 3! h f 3 ( 0 ) ( 2h 2 ) 1 3 f 2 x0 [ f x0 2 f x0 h h 2 1 h2 3 f x0 2h ] f ( 0 ) Eq 2 2 3 Three Point Formula For equally discrete points Xj=X0 10 Assume Xj=X1=X0+h , X1= X0+h, X2= X0+2h then Substitute in general rule Eq 1 2 x0 2h x0 h x0 2h f 2x1 f x0 x0 x0 h x0 x0 2h 2 x0 2h x0 x0 2h f x1 x0 h x0 x0 h x0 2h 2 x0 2h x0 x0 h f x2 x0 2h x0 x0 2h x0 h 1 3 f ( 1 ) ( x0 h x0 )( x0 h x0 2h) 3! 11 h h f 2x1 f x0 0 2 2 2h 1 3 f x2 f ( 1 ) (h 2 ) 2h 6 1 1 1 h f 2x0 h [ f x0 f x0 2h ] f 3 ( 1 ) h 2 2 6 2 1 1 1 h2 f 2x0 [ f x0 h f x0 h ] f 3 ( 1 ) h 2 2 6 Eq3 Three Point Formula For equally discrete points Xj=X1 12 Assume Xj=X2=X0+2h , X1= X0+h, X2= X0+2h then Substitute in general rule Eq 1 2 x0 4h x0 h x0 2h f 2x2 f x0 x0 x0 h x0 x0 2h 2 x0 4h x0 x0 2h f x1 x0 h x0 x0 h x0 2h 2 x0 4h x0 x0 h f x2 x0 2h x0 x0 2h x0 h 1 3 f ( 2 ) ( x0 2h x0 )( x0 2h x0 h) 3! 13 h 2h f 2 x2 f x0 f x1 2 2 2h h 3h 1 3 2 f x f ( ) ( 2 h ) 2 2 2 2h 3! 1 1 f 2 x0 2h [ f x0 2 f x0 h h 2 2 3 h 3 f x0 2h ] f ( 2 ) 2 3 14 f 2 x0 1 1 [ f x0 2h 2 f x0 h h 2 3 h2 f x0 ] f 3 ( 2 ) 2 3 f 2 x0 1 3 [ f x0 2 f x0 h h 2 1 h2 Eq 4 f x0 2h ] f 3 ( 2 ) 2 3 Three Point Formula For equally discrete points Xj=X2 15 1 3 1 h2 f 2 x0 [ f x0 2 f x0 h f x0 2h ] f 3 ( 0 ) h 2 2 3 Eq 2 1 1 1 h2 f 2 x0 [ f x0 h f x0 h ] f 3 ( 1 ) h 2 2 6 Eq3 1 3 1 h2 f 2 x0 [ f x0 2 f x0 h f x0 2h ] f 3 ( 2 ) h 2 2 3 Eq 4 Notes Eq 2 = Eq 4 by replacing h with –h Using +h in Eq2 forward differences formula Using –h in Eq2 backward differences formula 16 f 4 x0 1 [ 25 f x0 48 f x0 h 36 f x0 2h 12h h4 16 f x0 3h 3 f x0 4h ] f 5 ( ) Eq5 5 f 4 x0 1 [ f x0 2h 8 f x0 h 8 f x0 h 12h h4 Eq 6 f x0 2h ] f 5 ( ) 30 Notes Use Eq 5 with +h if xdesired is the first point forward diff. Use Eq 5 with -h if xdesired is the last point backward diff. Using Eq 6 if xdesired is the mid point 17 this data below approximate f 2.0 using all possible three point formulas and five point formulas x f ( x ) xe Given find the error of each formula Given X F(x) 1.8 10.889365 1.9 12.703199 2.0 14.778112 2.1 17.148957 2.2 19.855030 18 1 f 2 x0 2 [ f x0 h 2 f x0 f x0 h ] h h2 4 f ( ) Eq 7 24 19
© Copyright 2026 Paperzz