Apollonian variations Hans Herrmann Computational Physics IfB, ETH Zürich Switzerland DISCO Dynamics of Complex Systems Valparaiso November 24-26, 2011 Feliz Cumpleaños ! The art of packing densely Dense packings of granular systems are of fundamental importance in the manufacture of hard ceramics and ultra strong concrete. The key ingredient lies in the size distribution of grains. In the extreme case of perfect filling of spherical beads (density one), one has Apollonian tilings with a powerlaw distribution of sizes. DISCO: Dynamics of Complex Systems, Valparaiso, November 24-26, 2011 High performance cement (HPC) (Christian Vernet, Bouygues) DISCO: Dynamics of Complex Systems, Valparaiso, November 24-26, 2011 San Andreas fault tectonic plate 2 tectonic plate 1 gouge DISCO: Dynamics of Complex Systems, Valparaiso, November 24-26, 2011 Roller bearing ? DISCO: Dynamics of Complex Systems, Valparaiso, November 24-26, 2011 Apollonian packings DISCO: Dynamics of Complex Systems, Valparaiso, November 24-26, 2011 Apollonian packing Space between disks is fractal (Mandelbrot: „self-inverse“ fractal) of dimension df Boyd (73): bounds: 1.300197 < df < 1.314534 df = 1.3058 numerical: DISCO: Dynamics of Complex Systems, Valparaiso, November 24-26, 2011 7 Example for space filling bearing DISCO: Dynamics of Complex Systems, Valparaiso, November 24-26, 2011 construction by inversion C C‘ D D‘ C‘‘ DISCO: Dynamics of Complex Systems, Valparaiso, November 24-26, 2011 construction by inversion C‘ C‘‘ C DISCO: Dynamics of Complex Systems, Valparaiso, November 24-26, 2011 construction by inversion C C‘ D D‘ C‘‘ DISCO: Dynamics of Complex Systems, Valparaiso, November 24-26, 2011 construction by inversion C‘ C‘‘ C DISCO: Dynamics of Complex Systems, Valparaiso, November 24-26, 2011 construction by inversion DISCO: Dynamics of Complex Systems, Valparaiso, November 24-26, 2011 Construction of space filling bearing DISCO: Dynamics of Complex Systems, Valparaiso, November 24-26, 2011 Möbius transformations mapping that maps circles into circles (in d=2) z = point in complex plane az b A: z az d with ad - bc 1 mapping is conformal, ie preserves angles DISCO: Dynamics of Complex Systems, Valparaiso, November 24-26, 2011 15 Solution of coordination 4 4 1 1 3 4 2 x 3 2 without loss of generality consider only largest disks in a strip geometry center of inversion to fill largest wedge DISCO: Dynamics of Complex Systems, Valparaiso, November 24-26, 2011 16 Solution of coordination 4 invariance under reflexion 1st family 2nd family 2a disks touching 2a periodicity DISCO: Dynamics of Complex Systems, Valparaiso, November 24-26, 2011 17 Inversion inversions: 2 rA A: x x rB 2 B:x x x = radial distance from Inversion center rA2 2RA rB 2 2RB DISCO: Dynamics of Complex Systems, Valparaiso, November 24-26, 2011 18 Total transformation TB : x 2a x reflexion around a: consider B: mth disk: 0th disk: b0 bm TBTBTBb0 m times 2 rB BT ( x) 2a x DISCO: Dynamics of Complex Systems, Valparaiso, November 24-26, 2011 19 Solving the odd case m odd last disk: bm BT ...BTBb0 m symmetric under T, ie at a rB 2 a rB 2 2a rB 2 2a .. rB 2 2a rB 2 Z 2 a DISCO: Dynamics of Complex Systems, Valparaiso, November 24-26, 2011 20 Solving the even case m even last disk: bm TBT ...TBb0 m is fixed point, ie at rB rB 2 rB 2 a rB 2 2a rB 2 2a .. rB 2 2a rB 2 Z 2 a DISCO: Dynamics of Complex Systems, Valparaiso, November 24-26, 2011 21 Continuous fraction equations m odd 1 m even Zm Zm 2 Zm 2 Zm 2 2 . 2 Zm m 1 times 2 Zm Zm 2 Zm 2 Zm 2 2 . . . . . Zm 2 Zm 2 m times 2 z 1 DISCO: Dynamics of Complex Systems, Valparaiso, November 24-26, 2011 22 Result zn cos 2 radius of inversion zn half-period n3 2 For four-fold loops one has two families: (n,m) 1st family half-period a 2nd family 2 a zn zm 1 a 2 zn zm radius of upper circle RA RA 1 zn 2 zn zm 1 RA 1 zn 2 zn zm radius of lower circle RB RB 1 zm 2 z n zm 1 RB 1 zm 2 z n zm DISCO: Dynamics of Complex Systems, Valparaiso, November 24-26, 2011 23 Examples for zm m 0 1 zm 4 2 2 3 5 62 5 4 3 42 2 1 z4 x 2 : x 3 4 x 2 4 x 8 0 z6 x 2 : x 4 4 x3 12 x 2 8 x 16 0 a r 2a r 1 1 zm 4 1 a 1 2 DISCO: Dynamics of Complex Systems, Valparaiso, November 24-26, 2011 24 First family touching of largest spheres: ( RA RB ) 2 a 2 (1 RA RB ) 2 a 2 rA2 rB 2 1 a 2 zn zm 1 zm 2 RB rB zn zm 1 zn 2 RA rA zn zm 1 2 2 case n=2, m=1 : a 1 72 5 , rA 62 5 , rB 72 5 2 72 5 DISCO: Dynamics of Complex Systems, Valparaiso, November 24-26, 2011 25 Classification of space filling bearing n=1 m=1 n=2 m=1 n=3 m=1 n=∞ m=1 DISCO: Dynamics of Complex Systems, Valparaiso, November 24-26, 2011 First family DISCO: Dynamics of Complex Systems, Valparaiso, November 24-26, 2011 27 Second family Exists additional symmetry: On strip: A is fixed point of both inversions A 2a 0 A ( x, 2 RB ) rA, B 2 2RA, B rB 2 x 2 (2 RB ) 2 rA 2 x 2 (2 RA ) 2 n m : rA2 rA4 rB 2 rB 4 zn ( zn a 2 1) zm ( zm a 2 1) n m : RA RB 1 1 rA 2 rB , 4 2 x 1 1 zn 2 2 2a DISCO: Dynamics of Complex Systems, Valparaiso, November 24-26, 2011 28 Second family a2 1 for n m zn zm rA2 rA zn , zn zm 1 4 , a2 1 for n m 2 zn rB 2 zm for n m zn zm rB 1 4 for n m DISCO: Dynamics of Complex Systems, Valparaiso, November 24-26, 2011 29 Second family n=m=0 DISCO: Dynamics of Complex Systems, Valparaiso, November 24-26, 2011 30 Second family n = 1, m = 0 DISCO: Dynamics of Complex Systems, Valparaiso, November 24-26, 2011 31 Second family n = 4, m = 1 DISCO: Dynamics of Complex Systems, Valparaiso, November 24-26, 2011 32 Second family n=m=3 DISCO: Dynamics of Complex Systems, Valparaiso, November 24-26, 2011 33 Loop 6 DISCO: Dynamics of Complex Systems, Valparaiso, November 24-26, 2011 34 Loop 8 DISCO: Dynamics of Complex Systems, Valparaiso, November 24-26, 2011 35 Scaling laws Fractal dimension d f cut off = radius of smallest disk covered area - Porosity p 1 total area p~ 2d f s ~ 1d f - Surface s sum of perimeters per unit area Disk-size distribution ns ns # of disks of area s per unit area N n ds # of disks of radius s per unit area 2 DISCO: Dynamics of Complex Systems, Valparaiso, November 24-26, 2011 Scaling laws suppose ns ~ s nr ~ r 2 r = Radius of disk N nr dr ~ 12 s 2rnr dr ~ 22 3 2 p 1 r n r dr ~ 2 d f 2 1 1.305768 d f 1.85 DISCO: Dynamics of Complex Systems, Valparaiso, November 24-26, 2011 Fractal dimensions m df 0 n 0 1 3 1,42 1,40567 (10) First family 1,30 1,4321 (1) 1,41 1 1,38 1,4123 (2) 1,36 3 1,30 1,305768 (1) 2 1,33967 (5) n 0 1 3 m 0 1 3 1,72 1,71 1,71 1,71 1,71 1,67 DISCO: Dynamics of Complex Systems, Valparaiso, November 24-26, 2011 Mahmoodi packing • Reza Mahmoodi Baram DISCO: Dynamics of Complex Systems, Valparaiso, November 24-26, 2011 Rolling space-filling bearings See movie on: http://www.comphys.ethz.ch/hans/appo.html c 0.0 c 0.5 DISCO: Dynamics of Complex Systems, Valparaiso, November 24-26, 2011 Three-dimensional loop DISCO: Dynamics of Complex Systems, Valparaiso, November 24-26, 2011 Rotation of spheres without frustration To avoid friction the tangent velocity at any contact point must be the same: v1 v2 R1rˆ12 1 R2 rˆ12 2 R11 R22 rˆ12 0 R22 R11 12rˆ12 j 1 R j j 1 R11 1 i ,i 1rˆi ,i 1 j 1 j i i 1 DISCO: Dynamics of Complex Systems, Valparaiso, November 24-26, 2011 Rotation of spheres without frustration For a loop of n spheres, the consistency condition is: n R11 1 R11 1 which implies n n n i 1 i 1 i ,i 1rˆi ,i 1 is even n n i 1 1 i 1 i ,i 1rˆi ,i 1 0 i if we choose i ,i 1 c 1 Ri Ri 1 and R ˆ i ,i 1 Ri Ri 1 ri ,i 1 n n n i 1 n 1 we have 1 i ,i 1rˆi ,i 1 c 1 Ri ,i 1 0 i 1 i 1 Therefore, under the following condition we have rotating spheres without any sliding friction: j 1 R j j 1 j 1 R11 c 1 Ri ,i 1 j i 1 DISCO: Dynamics of Complex Systems, Valparaiso, November 24-26, 2011 Apollonian packing DISCO: Dynamics of Complex Systems, Valparaiso, November 24-26, 2011 Apollonian network • • • • • scale-free small world Euclidean space-filling matching with J.S. Andrade, R. Andrade and L. Da Silva Phys. Rev. Lett., 94, 018702 (2005) DISCO: Dynamics of Complex Systems, Valparaiso, November 24-26, 2011 Applications • • • • • • Systems of electrical supply lines Friendship networks Computer networks Force networks in polydisperse packings Highly fractured porous media Networks of roads DISCO: Dynamics of Complex Systems, Valparaiso, November 24-26, 2011 Degree distribution scale-free: P(k ) k W (k ) k 1 k m( k , n ) 3n 3 3n-1 3 2 3n-2 3 22 N n number of sites at generation n m(k , n) number of vertices of degree k cummulative distribution W (k ) m(k , n) / N n k k 3 2n-1 3 2n 2n+1 32 3 1 ln 3 1.585 ln 2 DISCO: Dynamics of Complex Systems, Valparaiso, November 24-26, 2011 Small-world properties Z. Zhang et al PRE 77, 017102 (2008) clustering coefficient 2 C number of connections between neighbors k ( k 1) C 0.828 shortest path l chemical distance between two sites l ln N DISCO: Dynamics of Complex Systems, Valparaiso, November 24-26, 2011 Ising model opinion coupling constant J n n correlation length J n diverges at Tc free energy, entropy, specific heat are smooth magnetization m e T T with Roberto Andrade DISCO: Dynamics of Complex Systems, Valparaiso, November 24-26, 2011 Feliz Cumpleaños, Eric !...... DISCO: Dynamics of Complex Systems, Valparaiso, November 24-26, 2011
© Copyright 2026 Paperzz