A fast algorithm for tracking human faces based on chromatic histograms Pattern Recognition Letters, 1999 Speak: M. Q. Jing 4/23/2001 國立交通大學 自動化資訊處理lab Outline   Introduction Chromatic histogram operations    Face tracking algorithm    Creation of a chromatic histogram Backprojection of a chromatic histogram Localization of a face region Tracking the face in the sequences Experimental results Introduction  The solutions on motion  Motion Estimate (Haralick, Horn, Desilva)    Precise approximation of the motion [DrawBack] heavy computation Color histogram approach   Insensitive to rotation,scaling,deformation Immune to the noises and cammera’s small changing. Chromatic histogram operations  Color Model: HSI Color Model RGB  HSI 1 I  ( r  g  b) 3 3 S  1 [min( r , g , b)] ( r  g  b) 1   [( r  g )  ( r  b )]  1  2 H  cos  2 1/ 2  [( r  g )  ( r  b )( g  b )]     Why do we use HSI  The chromaticity and intensity is separated   Reduce the effect of illumination Reduce the dimension of histogram from 3 to 2  Speedup the process Creation of a chromatic histogram  Each of the H and S axes are quantized into 32 levels. sample(x,y)=(R,G,B)-> map to (h,s)->Quantized->Histogram Create the histogram  Create the face model to get the skin color histogram Backprojection 1.which bin 2.get value of a chromatic histogram Test 1 2 Model Backprojection of a chromatic histogram Algorithm: Step 1: bx,y=M h(Cxy) , Step 2: Convolving bx,y with a blurring mask Where h(Cxy)= the bin corresponding to Cxy, M I= the histogram of the Model with ith bin. More example Face tracking algorithm  How to find a face in the initial frame  Face region lies within a color range Face region Historgram for each region Face tracking algorithm  Compute an average of the face historgrams Face model histogram F (100 faces histogram) Face tracking algorithm Steps 1 3 1. Backproject 2. Binarized & CC 3. Search a ellipse Finding an Ellipse  An Ellipse which best fits the connected component is computed. i j monent : m ij   x y f ( x, y ) ( x , y )CC center (x, y) : x  m10 / m00 , y  m01 / m00 orientatio n   arctan[(2 1,1 ) /(  2, 0   0, 2 )] / 2  i, j  central moment   (x - x) ( y  y ) i (x, y)CC j Least-Squares Curve Fitting  Length of major (a) and minor (b) axis: 1/ 8 3    2    [( x  x ) sin   ( y  y ) cos  ]    ( x , y )CC   a  ( 4 /  )1/ 4    2 [( x  x ) cos   ( y  y ) sin  ]    ( x , y )CC          [( x  x ) cos   ( y  y ) sin  ]2   ( x , y )CC  b  ( 4 /  )1/ 4   2 [( x  x ) sin   ( y  y ) cos  ]    ( x , y )CC  Proof: computer and robot vision I, page 623 3 1/ 8        Finding an Ellipse  The golden ratio of ellipse is picked up. Golden ratio for a ideal face  (1  5 / 2) (Farkas, 1987) Tracking the face region  Step 1: a new face model from the detected face. why  histogram F is constructed More precise face model, because tracking the same face.  Step 2: Backprojected  Step 3: An elliptical mask is used for searching why  onto the next frame. No ellipse finding,saving the computation cost Tracking the face region   Step 4: compute the sum of the values of all pixels within the elliptical mask. Step 5: return maximum response location Tracking the face region  Prevent the searching cost for (left->right) & ( top -> down)  Using motion information :  (Xi+1,Yi+1)=(2Xi - Xi-1 , 2Yi - Yi-1) (Xi+1,Yi+1) Xi-1 ,Yi-1 Xi,Yi Experements   UperSPARC RISC with 60MHz, 64 MB Real-time processing   7 frames/sec (160x120) 3.5 frames/sec (240x180) Face tracking (small face) Face tracking (large face) error Face tracking results using skip factor 5 change error change error Conclusion   A histogram backprojection only needs a simple replacement operation Insensitive to small deformation and occlusion   Because we use color information Two feature are used  Face shape & chromatic Conclusion  It cannot handle non-forward faces   Because we use a ellipse model to find a face. Zoom-in and Zoom-out  We fixed the ellipse size due to reducing the computing cost. Analysis   因為Tracking algorithm在第一張人臉抓 取後,即update face model histogram, => 所以第一張的人臉一定要抓的準確, 否則將造成一系列的錯誤 Face color histogram 是假設大家的膚色 類似,但是若是testing 有黑人,白人,則會 造成histogram 分佈加大,使得 backprojected 圖形更難處理.
© Copyright 2025 Paperzz