A fast algorithm for tracking human faces based on chromatic histograms Pattern Recognition Letters, 1999 Speak: M. Q. Jing 4/23/2001 國立交通大學 自動化資訊處理lab Outline Introduction Chromatic histogram operations Face tracking algorithm Creation of a chromatic histogram Backprojection of a chromatic histogram Localization of a face region Tracking the face in the sequences Experimental results Introduction The solutions on motion Motion Estimate (Haralick, Horn, Desilva) Precise approximation of the motion [DrawBack] heavy computation Color histogram approach Insensitive to rotation,scaling,deformation Immune to the noises and cammera’s small changing. Chromatic histogram operations Color Model: HSI Color Model RGB HSI 1 I ( r g b) 3 3 S 1 [min( r , g , b)] ( r g b) 1 [( r g ) ( r b )] 1 2 H cos 2 1/ 2 [( r g ) ( r b )( g b )] Why do we use HSI The chromaticity and intensity is separated Reduce the effect of illumination Reduce the dimension of histogram from 3 to 2 Speedup the process Creation of a chromatic histogram Each of the H and S axes are quantized into 32 levels. sample(x,y)=(R,G,B)-> map to (h,s)->Quantized->Histogram Create the histogram Create the face model to get the skin color histogram Backprojection 1.which bin 2.get value of a chromatic histogram Test 1 2 Model Backprojection of a chromatic histogram Algorithm: Step 1: bx,y=M h(Cxy) , Step 2: Convolving bx,y with a blurring mask Where h(Cxy)= the bin corresponding to Cxy, M I= the histogram of the Model with ith bin. More example Face tracking algorithm How to find a face in the initial frame Face region lies within a color range Face region Historgram for each region Face tracking algorithm Compute an average of the face historgrams Face model histogram F (100 faces histogram) Face tracking algorithm Steps 1 3 1. Backproject 2. Binarized & CC 3. Search a ellipse Finding an Ellipse An Ellipse which best fits the connected component is computed. i j monent : m ij x y f ( x, y ) ( x , y )CC center (x, y) : x m10 / m00 , y m01 / m00 orientatio n arctan[(2 1,1 ) /( 2, 0 0, 2 )] / 2 i, j central moment (x - x) ( y y ) i (x, y)CC j Least-Squares Curve Fitting Length of major (a) and minor (b) axis: 1/ 8 3 2 [( x x ) sin ( y y ) cos ] ( x , y )CC a ( 4 / )1/ 4 2 [( x x ) cos ( y y ) sin ] ( x , y )CC [( x x ) cos ( y y ) sin ]2 ( x , y )CC b ( 4 / )1/ 4 2 [( x x ) sin ( y y ) cos ] ( x , y )CC Proof: computer and robot vision I, page 623 3 1/ 8 Finding an Ellipse The golden ratio of ellipse is picked up. Golden ratio for a ideal face (1 5 / 2) (Farkas, 1987) Tracking the face region Step 1: a new face model from the detected face. why histogram F is constructed More precise face model, because tracking the same face. Step 2: Backprojected Step 3: An elliptical mask is used for searching why onto the next frame. No ellipse finding,saving the computation cost Tracking the face region Step 4: compute the sum of the values of all pixels within the elliptical mask. Step 5: return maximum response location Tracking the face region Prevent the searching cost for (left->right) & ( top -> down) Using motion information : (Xi+1,Yi+1)=(2Xi - Xi-1 , 2Yi - Yi-1) (Xi+1,Yi+1) Xi-1 ,Yi-1 Xi,Yi Experements UperSPARC RISC with 60MHz, 64 MB Real-time processing 7 frames/sec (160x120) 3.5 frames/sec (240x180) Face tracking (small face) Face tracking (large face) error Face tracking results using skip factor 5 change error change error Conclusion A histogram backprojection only needs a simple replacement operation Insensitive to small deformation and occlusion Because we use color information Two feature are used Face shape & chromatic Conclusion It cannot handle non-forward faces Because we use a ellipse model to find a face. Zoom-in and Zoom-out We fixed the ellipse size due to reducing the computing cost. Analysis 因為Tracking algorithm在第一張人臉抓 取後,即update face model histogram, => 所以第一張的人臉一定要抓的準確, 否則將造成一系列的錯誤 Face color histogram 是假設大家的膚色 類似,但是若是testing 有黑人,白人,則會 造成histogram 分佈加大,使得 backprojected 圖形更難處理.
© Copyright 2025 Paperzz