∞ X π2 1 = Proof that 2 n 6 n=1 The proof follows Proof 11 of Evaluating ζ(2) at http://empslocal.ex.ac.uk/people/staff/rjchapma/etc/zeta2.pdf AB3 page 33 shows that if π/2 Z sinn x dx In = 0 then I2n = 1 3 5 2n − 1 π · · · ··· · · 2 4 6 2n 2 It follows that 1 · 2 · 3 · · · · · (2n − 1) · 2n (2 · 4 · 6 · · · · · 2n)2 1 · 2 · 3 · · · · · (2n − 1) · 2n = (2n · 1 · 2 · 3 · · · · · n)2 (2n)! π = n 4 (n!)2 2 I2n = Integration by parts gives Z π/2 I2n = x cos2n x 0 + 2n π 2 π · 2 · . . . . . . . . . . . . . . . . . . . . . (1) π/2 x sin x cos2n−1 x dx 0 π/2 = n x2 sin x cos2n−1 x 0 − n Z π/2 x2 cos2n x − (2n − 1) sin2 x cos2n−2 x dx 0 = n(2n − 1)Jn−1 − 2n2 Jn Z π/2 where Jn = x2 cos2n x dx. Hence 0 (2n)! π = n(2n − 1)Jn−1 − 2n2 Jn 4n (n!)2 2 Multiply both sides by 4n (n!)2 to get 2n2 (2n)! π 4n (n!)2 4n (n!)2 = n(2n − 1)J − 2n2 Jn n−1 4n2 2n2 (2n)! 2n2 (2n)! 2 4n n! 4n (n!)2 = 2n(2n − 1)Jn−1 − Jn 4(2n)! n (2n)! 4n−1 ((n − 1)!)2 4n (n!)2 = Jn−1 − Jn (2n − 2)! (2n)! 1 Now we use the telescoping series trick AA3 page 9 and get N X 4N (N !)2 π = J − JN 0 4n2 (2N )! n=1 We will show that 4N (N !)2 JN = 0 N →∞ (2N )! from which it will follow that Z π/2 ∞ X π3 π 2 x dx = = J = 0 4n2 24 0 n=1 lim so, using the multiple rule for series and multiplying both side by 4/π we get ∞ X π2 1 = n2 6 n=1 as we wanted. To show that 4N (N !)2 JN = 0 N →∞ (2N )! we use the Inequalities for integrals method of AB3 Section 3.1. We also use the fact that x ≤ π2 sin x for 0 < x < π2 (proved later) with the Inequality Rule to get lim Z π/2 N 2 cos2N x dx JN = 0 Z π/2 ≤ 0 2 2 π = 4 Z π2 = 4 Z π2 = 4 π sin x 2 cos2N x dx π/2 sin2 x cos2N x dx 0 π/2 (1 − cos2 x) cos2N x dx 0 Z π/2 cos 2N Z x dx − 0 ! π/2 cos 2N +2 x dx 0 π2 (I2N − I2N +2 ) 4 π2 2N + 1 = I2N − I2N 4 2N + 2 π2 1 = I2N 4 2n + 2 = 2 by AB3 Exercise 2.3(b) So 4N (N !)2 4N (N !)2 π 2 1 JN ≤ I2N (2N )! (2N )! 4 2n + 2 4N (N !)2 π2 I2N = 8(N + 1) (2N )! π2 π = by (1) 8(N + 1) 2 π3 = 16(N + 1) Thus π3 1 16 n + 1 By the Squeeze Rule for sequences it follows that 0 < JN ≤ 4N (N !)2 JN = 0 N →∞ (2N )! lim and we are done. Finally we must show x≤ π π sin x for 0 < x < 2 2 which we can do using Strategy 4.1 of AB2. Let f (x) = From now on assume 0 < x < f 0 (x) = x π for 0 < x < . sin x 2 π 2 sin x − x cos x sin x ≥ 0 as cos x ≤ by AB1 page 7 2 x x so f is increasing on (0, π2 ) and hence, on this interval, f (x) ≤ f Thus π 2 = π π/2 = . sin π/2 2 x π ≤ sin x 2 so x≤ π sin x. 2 3
© Copyright 2026 Paperzz