OCTOGON MATHEMATICAL MAGAZINE Vol. 17, No.2, October 2009, pp 732-735 ISSN 1222-5657, ISBN 978-973-88255-5-0, www.hetfalu.ro/octogon 732 New inequality in tetrahedron Mihály Bencze26 ABSTRACT. In this paper we will prove a new inequality for the tetrahedron. MAIN RESULTS Theorem 1. (A refinement of Finsler-Hadwiger‘s inequality). In all triangle ABC holds √ ¡ ¢ 6 (ab + bc + ca) − 5 a2 + b2 + c2 ≤ 4 3σ [ABC] ≤ ¡ ¢ ≤ 2 (ab + bc + ca) − a2 + b2 + c2 Proof. Using the Schur‘s theorem for all x, y, z > 0 and t ∈ R we get xt (x − y) (x − z) + y t (y − z) (y − x) + z t (z − x) (z − y) ≥ 0 If t = 2 and x = a, y = b, z = c, then we obtain X a4 + abc X a≥ X ¡ ¢ ab a2 + b2 or 4 ³X ab ´2 + ³X ≥3 a2 ´2 −4 ³X ab ´ ³X ´ a2 ≥ ³X ´ Y a (b + c − a) which is equivalent with X X √ 4 3σ [ABC] ≤ 2 ab − a2 26 Received: 15.02.2007 2000 Mathematics Subject Classification. 26D05 Key words and phrases. Geometric inequalities, triangle inequalities, tetrahedron inequalities. New inequality in tetrahedron 733 Using again the Schur‘s theorem we get ³ X X ´ ³X ´ 2 xy − x2 x ≤ 9xyz but 27xyz ≤ ( P x)3 , therefore 2 X xy − X r 2 3xyz x ≤ ³X ´ x IfP x + y = a, Py + z =√b, z + x = c, then we obtain 6 ab − 5 a2 ≤ 4 3σ [ABC] . Corollary 1.1. In all triangle ABC holds 4r2 + 16Rr − s2 ≤ √ 3sr ≤ r (4R + r) Proof. In Theorem 1 we use that X ab = s2 + r2 + 4Rr, X ¡ ¢ a2 = 2 s2 − r2 − 4Rr and σ [ABC] = sr. Theorem 2. Let ABCD be a tetrahedron with hA and mA the lengths of the altitude and the median from vertex A to the opposite face BCD, respectively, and V denote the volume of the tetrahedron. If M = (BC − CD)2 + (BC − BD)2 + (BC − AC)2 + (BC − AB)2 + + (CD − BD)2 +(CD − AD)2 +(CD − AC)2 +(BD − AD)2 +(BD − AB)2 + + (AD − AC)2 + (AD − AB)2 + (AB − AC)2 , then ³X hA ´ ³X ´ 128V 32r M, m2A ≥ √ + 9 3 where r denote the radius of insphere of tetrahedron. P 2 P Proof. We have mA = 49 AB 2 . Denote SA the area of face BCD etc., and using the Theorem 1, we obtain 734 Mihály Bencze √ 2 + CD 2 + DB 2 ≥ 4S BC 3 + (BC − CD)2 + (BC − DB)2 + (CD − DB)2 A √ AC 2 + CD2 + DA2 ≥ 4SB √3 + (AC − CD)2 + (AC − DA)2 + (CD − DA)2 AB 2 + BD2 + DA2 ≥ 4SC√ 3 + (AB − BD)2 + (AB − DA)2 + (BD − DA)2 AB 2 + BC 2 + AC 2 ≥ 4SD 3 + (AB − BC)2 + (AB − AC)2 + (BC − AC)2 After addition we get √ X √ X 9X 2 AB 2 ≥ 4 3 SA + M or SA + M or mA ≥ 4 3 2 √ X 2 8 3X 2 SA + M. mA ≥ 9 9 P Multiplying by hA we obtain: ³X ´ ³X ´ 8√3 ³X ´ ³X ´ 2 ³X ´ 2 hA mA ≥ SA hA + M hA . 9 9 If we suppose that SA ≤ SB ≤ SC ≤ SD , then hA ≥ hB ≥ hC ≥ hD and from Chebishev‘s inequality holds ³X ´ ³X ´ X SA hA ≥ 4 SA hA = 48V P 1 P 1 Because hA ≥ P161 = 16r, thus hA = r , therefore hA ³X ´ ³X ´ 8√3 ³X ´ ³X ´ 2 ³X ´ hA m2A ≥ hA ≥ SA hA + M 9 9 √ 8 3 2 128V 32r ≥ · 48V + M · 16r = √ + M 9 9 9 3 2 X Equality holds if and only if AB = BC = CD = DA = BD = AC. Open Question. Using the notation of Theorem 2, determine the best constants c1 , c2 > 0 such that ³X ´ ³ X ´ 128V 128V √ + c1 M R ≥ hA m2A ≥ √ + c2 M r, 3 3 where R denote the radius of circumsphere of tetrahedron. New inequality in tetrahedron REFERENCE [1] Octogon Mathematical Magazine (1993-2009) Str. Hărmanului 6, 505600 Săcele-Négyfalu Jud. Brasov, Romania E-mail: [email protected] 735
© Copyright 2026 Paperzz