MODERN CONTROL SYSTEMS DR.MOHAMMED ABDULRAZZAQ mathematical models of systems 2.1 Introduction 2.1.1 Why? 1) Easy to discuss the full possible types of the control systems —only in terms of the system’s “mathematical characteristics”. 2) The basis of analyzing or designing the control systems. 2.1.2 What is ? Mathematical models of systems — the mathematical relationships between the system’s variables. 2.1.3 How get? 1) theoretical approaches 2) experimental approaches 3) discrimination learning mathematical models of systems 2.1.4 types 1) Differential equations 2) Transfer function 3) Block diagram、signal flow graph 4) State variables 2.2 The input-output description of the physical systems — differential equations The input-output description—description of the mathematical relationship between the output variable and the input variable of physical systems. 2.2.1 Examples mathematical models of systems Example 2.1 : A passive circuit R ur define: input → ur we have: L i C uc output → uc。 du di uc ur i C c dt dt d 2 uc du LC 2 RC c uc ur dt dt Ri L d 2 uc duc L make : RC T 1 T 2 T1T2 2 T1 uc ur R dt dt mathematical models of systems Example 2.2 : A mechanism Define: input → F ,output → y. We have: F k m y f dy d2y F ky f m 2 dt d t d2y dy m 2 f ky F dt dt If we make : f T1, k we have : T1T2 d2y dt 2 T1 m T2 f dy 1 y F dt k Compare with example 2.1: uc→y, ur→F---analogous systems mathematical models of systems Example 2.3 : An operational amplifier (Op-amp) circuit R2 C i2 ur R1 i 1 R1 R4 + Input →ur R3 output →uc 1 ( i3 i2 )dt R4 ( i3 i2 )......(1) C u i2 i1 r ...........................................( 2) R1 uc R3 i3 i3 uc i3 1 ( uc R2 i2 ).....................................( 3) R3 duc dur R2 R3 R2 R3 uc R ( R4 )C ur (2)→(3); (2)→(1); (3)→(1): R4C R R 1 2 3 dt dt make : R4C T ; R2 R3 R2 R3 k; ( R4 )C R1 R2 R3 duc dur we have : T uc k ( ur ) dt dt mathematical models of systems Example 2.4 : A DC motor La Ra ua ( J1, f 1) w1 ia M ( J2, f 2) w2 ( J3, f 3) w3 Input → ua, output → ω1 dia La Ra ia Ea ua ....(1) dt M C m ia .........................( 2) Mf i1 i2 (4)→(2)→(1) and (3)→(1): La J La f Ra J R f 1 ( ) 1 ( a 1)1 CeC m CeC m CeC m Ea C e1 .........................( 3) C e C m L Ra 1 d1 a M M MM J f 1 .....(4) ua Ce CeC m CeC m dt mathematical models of systems J J1 J2 here : f f1 f2 M i12 i12 Mf i1i2 J3 i12 i22 f3 i12 i22 ......equivalent moment of inertia ......equivalent friction coefficient ..........................equivalent torque (can be derived from : 1 i1 2 i1i2 3 ) La ............electric - magnetic time - constant Make: Te Ra Ra J Tm .......mechanical - electric time - constant CeC m Tf Ra f ....... friction - electric time - constant CeC m mathematical models of systems the differential equation description of the DC motor is: TeTm 1 (TeT f Tm ) 1 (T f 1)1 1 1 ua (TeTm M Tm M ) Ce J Assume the motor idle: Mf = 0, and neglect the friction: f = 0, we have: TeTm d 2 dt 2 d 1 Tm ua dt Ce Compare with example 2.1 and example 2.2: uc y ; ur F ua ----Analogous systems mathematical models of systems Example 2.5 : A DC-Motor control system R2 + ur R1 - R3 DC mot or R3 ua - M w l oad uk R1 t r i gger Uf - r ect i f i er M t echomet er + Input → ur, Output →ω; neglect the friction: R2 uk ( ur u f ) k1 ( ur u f )........................................(1) R1 u f .....................(2) TeTm d 2 dt 2 ua k 2 uk ......................(3) d 1 1 Tm ua (TeTm M Tm M )......(4) dt Ce J mathematical models of systems (2)→(1)→(3)→(4),we have: d 2 Tm d 1 1 TeTm 2 Tm (1 k1k 2 C ) k1k 2 ur (Te M M ) e dt Ce J dt 2.2.2 steps to obtain the input-output description (differential equation) of control systems 1) Identify the output and input variables of the control systems. 2) Write the differential equations of each system’s component in terms of the physical laws of the components. * necessary assumption and neglect. * proper approximation. 3) dispel the intermediate(across) variables to get the inputoutput description which only contains the output and input variables. mathematical models of systems 4) Formalize the input-output equation to be the “standard” form: Input variable —— on the right of the input-output equation . Output variable —— on the left of the input-output equation. Writing the polynomial—according to the falling-power order. 2.2.3 General form of the input-output equation of the linear control systems ——A nth-order differential equation: Suppose: input → r ,output → y y ( n ) a1 y ( n1) a2 y ( n2) an1 y (1) an y b0 r ( m ) b1r ( m 1) b2 r ( m 2) bm 1r (1) bm r .........n m mathematical models of systems 2.3 Linearization of the nonlinear components 2.3.1 what is nonlinearity? The output of system is not linearly vary with the linear variation of the system’s (or component’s) input → nonlinear systems (or components). 2.3.2 How do the linearization? Suppose: y = f(r) The Taylor series expansion about the operating point r0 is: f ( r ) f ( r0 ) f (1) f ( 2 ) ( r0 ) f ( 3) ( r0 ) 2 ( r0 )( r r0 ) ( r r0 ) ( r r0 )3 2! 3! f ( r0 ) f (1) ( r0 )( r r0 ) make : y f ( r ) f ( r0 ) and : r r r0 we have : y f ' ( r0 )r ............linearization equation mathematical models of systems Examples: Example 2.6 : Elasticity equation F ( x ) kx suppose : k 12.65; 1.1; operating point x0 0.25 F ' ( x ) kx 1 F ' ( x0 ) 12.65 1.1 0.250.1 12.11 we have : that is : F ( x ) F ( x0 ) 12.11( x x0 ) ΔF 12.11x ..............linearization equation Example 2.7 : Fluxograph equation Q( p) k p Q —— Flux; p —— pressure difference mathematical models of systems because : Q' ( p ) thus : Q k 2 p k p...........linearization equation 2 p0 2.4 Transfer function Another form of the input-output(external) description of control systems, different from the differential equations. 2.4.1 definition Transfer function: The ratio of the Laplace transform of the output variable to the Laplace transform of the input variable with all initial condition assumed to be zero and for the linear systems, that is: mathematical models of systems C ( s) G( s) R( s ) C(s) —— Laplace transform of the output variable R(s) —— Laplace transform of the input variable G(s) —— transfer function Notes: * Only for the linear and stationary(constant parameter) systems. * Zero initial conditions. * Dependent on the configuration and coefficients of the systems, independent on the input and output variables. 2.4.2 How to obtain the transfer function of a system 1) If the impulse response g(t) is known mathematical models of systems We have: Because: Then: Example 2.8 : G ( s ) Lg ( t ) C ( s) G( s) , if r ( t ) ( t ) R( s ) 1 R( s ) G ( s ) C ( s ) Lg( t ) g( t ) 5 3e 2t 5 3 2( s 5) G( s) s s 2 s( s 2) 2) If the output response c(t) and the input r(t) are known We have: Lc( t ) G( s) Lr ( t ) mathematical models of systems Example 2.9: c( t ) 1 e 3t Then: 1 ........Unit step function s 1 1 3 C ( s) s s 3 s( s 3) .........Unit step response r ( t ) 1( t ) R(s) C ( s ) 3 s( s 3) 3 G( s) R( s ) 1s s3 3) If the input-output differential equation is known •Assume: zero initial conditions; •Make: Laplace transform of the differential equation; •Deduce: G(s)=C(s)/R(s). mathematical models of systems Example 2.10: 2 c( t ) 3 c( t ) 4c( t ) 5 r ( t ) 6r ( t ) 2 s 2C ( s ) 3 sC ( s ) 4C ( s ) 5 sR( s ) 6 R( s ) C(s) 5s 6 G(s) 2 R(s) 2 s 3 s 4 4) For a circuit * Transform a circuit into a operator circuit. * Deduce the C(s)/R(s) in terms of the circuits theory. Chapter 2 mathematical models of systems Example 2.11: For a electric circuit: R1 R2 C1 ur R1 C2 uc ur ( s) 1 1 1 // ( R2 ) sC1 sC 2 sC 2 U c ( s) U r ( s) 1 1 1 R1 // ( R2 ) R2 sC1 sC 2 sC 2 G( s) 1 T1T2 s (T1 T2 T12 ) s 1 2 U r ( s) U c ( s) 1 U r ( s ) T1T2 s 2 (T1 T2 T12 ) s 1 here : T1 R1C 1 ; T2 R2 C 2 ; T12 R1C 2 1/ C1s R2 1/ C2s uc( s) Chapter 2 mathematical models of systems Example 2.12: For a op-amp circuit R2 ur R1 R1 + R2 C uc ur R1 R1 + 1/ Cs uc 1 R2 U c ( s) R2Cs 1 sC G( s) U r ( s) R1 R1Cs 1 )................. .PI-Controller s k R2 ; R2C ...... Integral time consta nt R1 k (1 here : Chapter 2 mathematical models of systems 5) For a control system • Write the differential equations of the control system; • Make Laplace transformation, assume zero initial conditions, transform the differential equations into the relevant algebraic equations; • Deduce: G(s)=C(s)/R(s). Example 2.13 the DC-Motor control system in Example 2.5 R2 + ur R1 - R3 DC mot or R3 ua - w l oad uk R1 t r i gger Uf M - r ect i f i er M t echomet er + Chapter 2 mathematical models of systems In Example 2.5, we have written down the differential equations as: R2 uk ( ur u f ) k1 ( ur u f )..................................(1) R1 u f ....................(2) TeTm d 2 ua k 2 uk ...................(3) Tm d 1 Tm ua (Te M M )......(4) dt Ce J dt 2 Make Laplace transformation, we have: U k ( s ) k1[U r ( s ) U f ( s )]...................................................(1) U f ( s ) ( s )...............(2) U a ( s ) k 2U k ( s )..............(3) TeTm s Tm 1 (TeTm s Tm s 1)( s ) U a ( s) M ( s )......(4) Ce J (2)→(1)→(3)→(4), we have: 2 Chapter 2 mathematical models of systems TeTm s Tm 1 1 [TeTm s Tm s (1 k1k 2 )]( s ) k1k 2 U r ( s ) M ( s) Ce Ce J k1k 2 1 Ce ( s ) G( s) U r ( s ) T T s 2 T s (1 k k 1 ) e m m 1 2 Ce 2 La here : Te ...........electric magnetic time - constant Ra Ra J Tm ......mechanical electric time - constant CeC m Chapter 2 mathematical models of systems 2.5 Transfer function of the typical elements of linear systems A linear system can be regarded as the composing of several typical elements, which are: 2.5.1 Proportioning element Relationship between the input and output variables: c ( t ) kr ( t ) C ( s) G( s ) k Transfer function: R( s ) Block diagram representation and unit step response: R( s) C( s) k r( t ) Examples: amplifier, gear train, tachometer… C( t ) k 1 t t Chapter 2 mathematical models of systems 2.5.2 Integrating element Relationship between the input and output variables: t 1 c( t ) r ( t )dt ..........TI : integral time constant TI 0 C ( s) 1 G( s) Transfer function: R( s ) TI s Block diagram representation and unit step response: R( s) 1 TI s r( t ) 1 t C( s) 1 Examples: C( t ) TI Integrating circuit, integrating motor, integrating wheel… t Chapter 2 mathematical models of systems 2.5.3 Differentiating element Relationship between the input and output variables: dr ( t ) c( t ) TD dt Transfer function: C ( s) G( s) TD s R( s ) Block diagram representation and unit step response: R( s) TDs r( t ) 1 C( s) C( t ) TD t Examples: differentiating amplifier, differential valve, differential condenser… t Chapter 2 mathematical models of systems 2.5.4 Inertial element Relationship between the input and output variables: dc( t ) T c( t ) kr ( t ) dt C ( s) k Transfer function: G ( s ) R( s ) Ts 1 Block diagram representation and unit step response: R( s) k Ts 1 r( t ) 1 t C( s) Examples: C( t ) inertia wheel, inertial load (such as temperature system)… k T t Chapter 2 mathematical models of systems 2.5.5 Oscillating element Relationship between the input and output variables: T 2 d c( t ) 2 dt 2 dc( t ) 2T c( t ) kr ( t ) dt 0 1 C ( s) k 2 2 Transfer function: G ( s ) R( s ) T s 2Ts 1 0 1 Block diagram representation and unit step response: R( s) r( t ) 1 C( s) T 2 s 2 2Ts 1 C( t ) Examples: oscillator, oscillating table, oscillating circuit… k 1 t t Chapter 2 mathematical models of systems 2.5.6 Delay element Relationship between the input and output variables: c( t ) kr ( t ) C ( s) Transfer function: G ( s ) ke s R( s ) Block diagram representation and unit step response: R( s) ke C( s) s Examples: gap effect of gear mechanism, threshold voltage of transistors… C( t ) r( t ) k 1 t t Chapter 2 mathematical models of systems 2.6 block diagram models (dynamic) Portray the control systems by the block diagram models more intuitively than the transfer function or differential equation models .2.6.1 Block diagram representation of the control systems Si gnal ( var i abl e) X( s) Component ( devi ce) G( s) X3( s) Adder ( compar i son) E( s) =x1( s) +x3( s) - x2( s) X1( s) + + E( s) - Examples: X2( s) Chapter 2 mathematical models of systems Example 2.14 For the DC motor in Example 2.4 In Example 2.4, we have written down the differential equations as: dia La Ra ia Ea ua ....(1) M C m ia .........................( 2) dt d Ea C e .........................( 3) M M J f .....(4) dt Make Laplace transformation, we have: U a ( s ) Ea ( s ) La sI a ( s ) Ra I a ( s ) Ea ( s ) U a ( s ) I a ( s ) .............(5) La s Ra M ( s ) C m I a ( s )......................................................................................(6) Ea ( s ) C e ( s ).......................................................................................(7) 1 M ( s ) M ( s ) J s ( s ) f ( s ) ( s ) [ M ( s ) M ( s )]......(8) Js f Chapter 2 mathematical models of systems Draw block diagram in terms of the equations (5)~(8): M (s ) Ua( s) - 1 La s Ra I a( s) M( s) Cm Ea( s) - (s ) 1 Js f Ce M(s) Consider the Motor as a whole: Ua(s) 1 Ce TeTms2 (Tm TeTf )s Tf 1 1 (TeTms Tm) J TeTms2 (Tm TeTf )s Tf 1 - (s) Chapter 2 mathematical models of systems Example 2.15 The water level control system in Fig 1.8: 1 k4 k3 Ce k2e s k1 TeTm s 2 Tm s 1 T1 s 1 T2 s 1 s Desi r ed wat er l evel I nput hi e ampl i f i er ua Mot or Gear i ng Feedback si gnal hf Tm (Te s 1) J M ( s) 2 TeTm s Tm s 1 Act ual wat er l evel Q Wat er Out put h Val ve cont ai ner Fl oat Chapter 2 mathematical models of systems The block diagram model is: M (s ) Tm (Te s 1) J TeTm s 2 Tm s 1 Hi ( s) E( s) - K Ua( s) 1 Ce TeTm s 2 Tm s 1 k3 k4 k 2 e s (s) s (s) T1s 1 Q( s) T2 s 1 - Hf ( s) H( s) Chapter 2 mathematical models of systems Example 2.16 The DC motor control system in Fig 1.9 1 k p (1 ) TI s Desi red rot at e speed Ref erence i nput ur k De s 1 Ce TeTm s 2 Tm s 1 Act uat or Error uk e Regul at or ua a Tri gger Rect i f i er - DC mot or Act ual rot at e speed Out put Techomet er Feedback si gnal uf Ts 1 Tm (Te s 1) J M ( s) 2 TeTm s Tm s 1 Chapter 2 mathematical models of systems The block diagram model is: M (s) Tm ( T e s 1) J TeTm s 2 Tm s 1 Ur ( s) E( s) Uf ( s) 1 k p (1 ) TI s Uk( s) kD e s Ua( s) 1 Ce TeTm s 2 Tm s 1 Ts1 - (s ) 1 s (s ) Chapter 2 mathematical models of systems 2.6.2 Block diagram reduction purpose: reduce a complicated block diagram to a simple one. 2.6.2.1 Basic forms of the block diagrams of control systems Chapter 2-2.ppt Chapter 2 mathematical models of systems
© Copyright 2026 Paperzz