H2 Formation in the Perseus Molecular Cloud: Observations Meet Theory Motivation (1) Observations • • Strong correlation between star formation rate and H2 surface density Constant SF efficiency in molecular clouds Ability to form H2 controls the evolution of individual galaxies! • • • Krumholz et al. (2009) Analytic solution for H2 content in an atomic-molecular complex No direct comparison to individual molecular clouds in the MW! A high resolution study of the HI–H2 transition across a molecular cloud log ΣSFR (M yr-1 kpc-2) • (2) Theory • • Perseus molecular cloud D ~ 300 pc and solar Z Low mass (~104 M) with intermediate SF Estimate RH2 = ΣH2 / ΣHI Investigate how RH2 spatially 30 nearby spiral galaxies changes Bigiel et al. (2011) log ΣH2 (M pc-2) Background: Analytic Modeling of H2 Formation in a PDR • Krumholz et al. (2009; KMT) model CNM Uniform isotropic ISRF Pressure equilibrium with WNM H2 Equilibrium H2 formation: Formation on dust grains = Photodissociation by LW photons Sharp HI-H2 transition Background: Analytic Modeling of H2 Formation in a PDR • KMT's predictions: log ΣHI (M pc-2) 10 M pc-2 (1) Minimum ΣHI to shield H2 against ISRF ΣHI ~ 10 M pc-2 for solar Z (2) H2-to-HI ratio (RH2) RH2 fH2 / fHI 1/ 3 s 3 125 s 3 1 11 96 s 1 where s ~ total Z MH2 / M f (nCNM , Z, total ) RH2 is determined by CNM property, metallicity, gas surface density, and is independent of ISRF. log ΣHI + ΣH2 (M pc-2) RH2 = ΣH2 / ΣHI for Perseus • ΣHI : GALFA-HI DR1 data • ΣH2 : IRAS 60, 100 μm, Schelegel et al. Tdust, 2MASS AV images IRAS 100 μm image (~4.3': ~0.4 pc at D = 300 pc) GALFA-HI N(HI) image (~4') RH2 image 12CO contours Dark regions Star-forming regions B5 B1 NGC1333 IC348 B1E Lee et al. (2011, submitted) ΣHI vs ΣHI + H2 IC348 (Star-forming region) HI-dominated General results 1) Uniform ΣHI ~ 6–8 M pc-2 H2-dominated ΣHI (M pc-2) Consistent with KMT's prediction of ΣHI ~ 10 M pc-2 for solar Z! B1E (Dark region) HI-dominated H2-dominated 3σ ΣHI + ΣH2 (M pc-2) ΣHI (M pc-2) 3σ 2) No detection of turnover HI envelopes are highly extended (> 30 pc)! 3σ 3σ ΣHI + ΣH2 (M pc-2) RH2 vs ΣHI + H2 IC348 (Star-forming region) General results 3) Agreement with KMT on sub-pc scales 3σ RH2 = ΣH2 / ΣHI 4) Best-fit parameter ΦCNM = 6– 10 TCNM ~ 70 K , consistent with observed CNM properties (Heiles & Troland 2003)! B1E (Dark region) 3σ ΣHI + ΣH2 (M pc-2) 5) HI–H2 transition (RH2 ~ 0.25) at N(HI + H2) = (8–10) × 1020 cm-2 RH2 = ΣH2 / ΣHI 3σ 3σ Consistent with previous estimates in the Galaxy (e.g., Savage et al. 1977)! ΣHI + ΣH2 (M pc-2) Discussion: Equilibrium vs Non-equilibrium H2 Formation • Equilibrium H2 formation τH2 = 10–30 Myr (e.g., Goldsmith et al. 2007) ≥ Lifetime of GMCs • Role of turbulence: non-equilibrium H2 formation? RH2 = ΣH2 / ΣHI Equilibrium: RH2 ~ constant Non-equilibrium: RH2 keeps increasing Turbulence may play a secondary role! Mac Low & Glover (2011) Time (Myr) Discussion: Importance of WNM / Internal Radiation Field • Importance of WNM for shielding H2 KMT: all CNM Perseus: WNM about 50% Importance of internal RF Perseus – Uniform external RF, negligible internal RF Tdust ~ 17 K Tdust image Lee et al. (2011, submitted) Summary 1) The dark and star-forming regions have uniform ΣHI ~ 6–8 M pc-2. 2) The purely HI envelopes are highly extended (> 30 pc). 3) HI–H2 transition occurs at N(HI) + 2N(H2) = (8–10) × 1020 cm-2. 4) KMT's equilibrium model captures the fundamental principles of H2 formation on sub-pc scales! 5) The importance of WNM for H2 shielding, internal RF, and the timescale for H2 formation still remain as open questions.
© Copyright 2026 Paperzz