Study on Sub-barrier Fusion Reactions and Synthesis of Superheavy Elements Based on Transport Theory Zhao-Qing Feng Institute of Modern Physics, CAS Contents • Introduction • Improved isospin dependent quantum molecular dynamics model • Study on dynamics of fusion reactions near Coulomb barrier • Production cross sections of the superheavy nuclei based on dinuclear system model • Summary 1. Introduction • 60s, 20 century, Shell model prediction: “stability island” around Z=114,N=184 • Experiments GSI: 110-112 Dubna: 113-116 Riken: 113 IMP: 105, 107 (new nuclei) • Theoretical models for the description of superheavy nuclei: Dinuclear system model (Adamian et al. NPA 633 (1998) 409, Li et al. EPL 64(2003)750, Feng et al. CPL 22 (2005) 846) Fluctuation-dissipation model (Aritomo et al. PRC 59 (1999) 796) Nucleon collectivization model (Zagrebaev et al. PRC 65 (2001) 014607) Macroscopic dynamical model (S. Bjornholm and W.J. Swiatecki, NPA 391(1982) 471) Improved isospin dependent quantum molecular dynamics model (Wang et al. PRC69 (2004) 034608), Feng et al. NPA 750 (2005) 232 2. Improved isospin dependent quantum molecular dynamics model • Purpose: to study fusion mechanism near Coulomb barrier • Improved aspects including: 1. Yukawa term is replaced by introducing density dependent surface term derived from self-consistently Skyrme interaction. (Wang et al. PRC 65 (2002) 064608) 2. Introducing surface symmetry term. (Wang et al. PRC 69 (2004) 034608) 3. Nucleon’s fermionic nature is improved by using phase space constraint method. (M. Papa et al. PRC 64 (2001) 024612) 4. Coulomb exchange term is included in the model. (Wang et al. PRC 67 (2003) 024604) 5. Shell effect is considered in the model. (Feng et al. NPA, 750 (2005) 232 ) 6. Switch function method is introduced in the model, which can effectively prevent some unphysical nucleus emissions in the process of projectile and target appoarchng. (Feng et al. HEP&NP,2005,29(1) 41 ) 2.1 Introduction on the improved isospin dependent quantum molecular dynamics model • In the improved model, the effective interaction potential energy is denoted as U U coul U vol U sym U surf U eff U shell U coul e2 4 1 (1 tiz )(1 t jz )erf (rij / 4 L ) i j i ri j 1/ 3 3 3 e 4 2 U vol 4/3 p dR ij ij 2 i j i 0 1 i j i 0 Csym ij 3 ri rj U sym tizt jz 1 k sym 2 i j i 0 2L 2L 2 g surf 3 ri rj ij U surf 2 i j i 2 L 2 L 0 ij U eff g i j i 0 2 (ri rj ) 1 ij exp 3/ 2 4 L 4L Csymk sym 2 (r ) (r )dr U surf -sym 20 2 • Switch function method is introduced, which can prevent some unphysical nucleons emission. So the surface interaction energy of the system is written as surf surf surf U syst U proj U tsurf S U arg comp (1 S ). S is called as switch function S C0 C1 R Rlow R Rlow 2 R Rlow 3 C2 ( ) C3 ( ) Rup Rlow Rup Rlow Rup Rlow R Rlow 4 R Rlow 5 C4 ( ) C5 ( ) Rup Rlow Rup Rlow Taking coefficients must satisfy the continuity of the surface energy and its first derivative! C0 C1 C2 0 0 0 C3 10 C4 C5 -15 6 Parameter set in the model /MeV /MeV Csym/MeV ksym/fm2 gsurf/MeVfm2 g /MeV 0/fm-3 -356.0 303.0 7/6 32.0 0.08 8.0 10.0 0.165 Parameter set taken by Wang et al. The ground state properties, static (dynamical) barriers fusion (capture) excitation function as well as neck dynamical behaviour et al. can be described very well using the improved model. 2.2 Consideration of shell effect in ImIQMD • As we know that shell effect is the diversity of shell model (shell structure) and macroscopic model (bulk property). Thus, the shell correction energy can be obtained from the variance of shell levels and uniformed levels, which is written by Eshell ~ E E. Using Strutinsky method (NPA 95 (1967) 420), the shell correction energy is written as ~ [ N / 2] Eshell E E 2 ei 2 e g (e)de i 1 (e ei ) 2 e ei f g (e) exp 2 i 1 • The smoothed level density is usually given by Gaussian distribution width 1.2. In the calculation, 3rd-order Laguerre polynomial is used. The Fermi energy is obtained by N 2 g (e)de. The shell levels are calculated by using deformed two center shell model. (R.A. Gherghescu, Phys. Rev. C 67 (2003) 014309) • In ImIQMD, the Shell correction energy is denoted by U IQMD shell Eshell dr . 2 a1 exp r R / a Using canonical equation, the force can be obtained as IQMD Eshell exp r R / a Fshell r, 2 0 a 1 exp r R / a One can obtain the force of each nucleon derived from the shell correction energy as i ei ei exp ri R / a Fshell r 2 0 a 1 exp ri R / a From energy density functional, we can also know that shell effect mainly embodies the surface of the nucleus! (M. Brack, C. Guet, H.B. Hakansson, Phys. Rep. 123 (1985) 276) • Considering the Woods-Saxon distribution form of the nuclear density , it is more self-consistently by denoting the shell correction energy as IQMD U shell Eshell dr . 0 IQMD Eshell Fshell , 0 i ei ei Fshell i 0 DTCSM levels It is very important to fill these levels in ImIQMD. In our calculation, we label each nucleon according to angular momentum and single particle energies, which are obtained respectively by 2 p z Li (ri pi ) z , ei i i i 2m 0 0 48 Ca+ U smoothed proton levels DTCSM proton levels Ca g(e) 80 f5/2 f7/2 50 s1/2/ d3/2 40 d5/2 30 p1/2 p3/2 20 s1/2 10 proton levels smoothed neutron levels DTCSM neutron levels 50 30 20 f 7/2 d3/2 s1/2 d5/2 p1/2 p3/2 10 s1/2 0.0 0.4 0.8 1.2 1.6 0.0 0.4 0.8 1.2 1.6 0.0 0.4 0.8 1.2 1.6 0.0 (R-Ri)/(Rt-Ri) 15 proton Eshell neutron Eshell 10 Eshell Eshell/MeV E/MeV 40 5 0 -5 -10 0.0 0.5 1.0 (R-Ri)/(Rt-Ri) 1.5 0.4 0.8 1.2 1.6 EFermi=41.77MeV E/MeV 60 EFermi=42.54MeV 70 238 smoothed levels 48 3. Dynamical study on fusion reactions near Coulomb barrier • Based on improved isospin dependent quantum molecular dynamics model, the static and dynamical Coulomb barrier, fusion/capture cross sections, neck dynamical behaviour et al. are studied systematically. 3.1 Dynamical barrier V ( R) E pt ( R) E p Et Here, Ept, Ep and Et are the total, projectile and target energy respectively, the kinetic energy part is approximated by using Thomas-Feimi model as 2/3 2 2 3 i 3 Ekin 5 2m i 2 The static nucleus-nucleus interaction potential 300 48 200 Vb h Ca+ 208 Pb w V/MeV 100 0 Total Prox. Kinetic Skyrme Symmetry Surface Coulomb Effective -100 -200 -300 4 8 12 R/fm 16 20 Static barriers, prox. (W.D. Myers et al., PRC 62 (2000) 044610) 300 300 48 Vb/MeV 250 208 Ca+ ImIQMD Prox. 200 238 Ca+ U 200 150 150 100 100 50 50 5 10 15 20 25 120 5 10 15 20 25 15 20 25 120 16 16 208 O+ 100 Vb/MeV 48 250 Pb Pb 80 80 60 60 40 40 20 238 O+ 100 U 20 5 10 15 R/fm 20 25 5 10 R/fm Dependence on the projectile-target combinations leading to the same compound nucleus formation 258Rf 350 350 124 300 Vb/MeV 134 Sn+ Xe 86 ImIQMD Prox. 250 250 200 200 150 150 100 172 Kr+ 300 Er 100 5 10 15 20 25 300 5 10 15 20 25 20 25 140 24 50 Ti+ 250 234 Mg+ 208 Pb U 120 Vb/MeV 200 100 150 80 100 50 60 5 10 15 R/fm 20 25 5 10 15 R/fm The static and dynamical interaction potentials calculated by using the ImIQMD for the reaction sytems40,48Ca+40,48Ca. 40 40 40 48 48 48 Ca+ Ca,Vb=56.28MeV 70 50 Ca+ Ca,Vb=54.42MeV 60 Ca+ Ca,Vb=50.61MeV Ca+ Ca,Vb=48.70MeV 40 40 Ca+ Ca,Vb=47.23MeV 48 Ca+ Ca,Vb=45.68MeV 48 48 b= 0 fm 50 Vb/MeV 40 40 20 30 30 16 12 Vshell/MeV Vb/MeV 40 20 10 Ec.m.=50MeV (below the static barriers) 20 8 4 0 0 2 4 6 8 10 R/fm 0 0 4 8 12 R/fm 16 20 8 10 12 14 R/fm 16 18 Dependence of dynamical barriers on incident energy 250 Vb=198.5 MeV (Prox. 2000) 48 Ca+ 238 Vb=177.7 MeV (Adiabatic barrier) U Vb=203.8 MeV (waist to waist ) Vb=187.0 MeV (pole to pole) Vb=182.6 MeV (Ec.m.=220 MeV) Vb=174.4 MeV (Ec.m.=200 MeV) 200 Vb/MeV Vb=169.8 MeV (Ec.m.=190 MeV) Vb=167.6 MeV (Ec.m.=180 MeV) Vb=166.4 MeV (Ec.m.=175 MeV) 150 100 4 8 12 16 R/fm 20 24 Dependence of fusion barrier on projectile neutron number leading to the same element formation 340 340 320 320 Z=110 238 300 260 240 Vb/MeV 220 200 30 40 50 60 Ca+ U 232 Ti+ Th 226 Cr+ Ra 210 Fe+ Rn 210 Ni+ Po 208 Zn+ Pb 202 Ge+ Hg 194 Se+ Pt 192 Kr+ Os 186 Sr+ W 180 Zr+ Hf 176 Mo+ Yb 164 Pd+ Dy 152 Sn+ Sm 300 232 Ca+ Th 226 Ti+ Ra 208 Ni+ Pb 202 Zn+ Hg 194 Ge+ Pt 192 Se+ Os 186 Kr+ W 176 Zr+ Yb 160 Pd+ Gd 150 Sn+ Nd 280 180 20 Z=112 70 340 280 260 240 220 200 180 20 30 40 50 60 70 360 244 Ca+ Pu 238 Ti+ U 232 Cr+ Th 226 Fe+ Ra 210 Ni+ Rn 210 Zn+ Po 208 Ge+ Pb 202 Se+ Hg 188 Kr+ Pt 192 Sr+ Os 186 Zr+ W 180 Mo+ Hf 176 Ru+ Yb 168 Pd+ Er 166 Cd+ Dy 160 Sn+ Gd Z=114 320 300 280 260 240 220 200 20 30 40 50 60 70 80 Z=116 340 248 320 Ca+ Cm 238 Cr+ U 226 Ni+ Ra 210 Ge+ Po 202 Kr+ Hg 192 Zr+ Os 180 Ru+ Hf 168 Cd+ Er 166 Sn+ Dy 152 Xe+ Sm 300 280 260 240 220 200 20 Nproj 30 40 50 60 70 80 3.2 Neck dynamical behaviour Time evolution of N/Z at neck region for 40,48Ca+ 40,48Ca 4.5 4.5 Ec.m.=50MeV below the barriers for b=0fm 4.0 3.5 40 2.5 2.5 2.0 1.5 1.5 1.0 1.0 0 50 100 150 -1 t/(fmc ) 200 40 Ca+ Ca 48 Ca+ Ca 48 48 Ca+ Ca 3.0 2.0 0.5 40 40 N/Z N/Z 3.5 40 Ca+ Ca 40 48 Ca+ Ca 48 48 Ca+ Ca 3.0 Ec.m.=60MeV above the barriers for b=0fm 4.0 250 0.5 0 50 100 150 -1 t/(fmc ) 200 250 5.0 208 Ca+ 4.0 Pb N/Z(Ec.m.=190MeV) N/Z(Ec.m.=200MeV) 3.5 N/Z N/Z dependence on incident energy at neck region for system 48Ca+208Pb 48 4.5 3.0 2.5 2.0 1.5 1.0 0 20 40 60 80 100 120 140 T/(fm/c) 60 48 238 Ca+ 50 40 Ntrans Nucleon transfer in neck region for reaction system 48Ca+238U U, Ec.m.=200 MeV 48 p( Ca) 48 n( Ca) 238 p( U) 238 n( U) 30 20 10 0 200 250 300 350 T/(fm/c) 400 450 500 Neck radius development in the process of neck formation 8 Rneck/fm 6 4 48 48 208 Ec.m.=200 MeV 2 238 Ca+ U, Ec.m.=190 MeV Ca+ Pb Waist to Waist pole to pole Ec.m.=180 MeV 0 0 100 200 t/(fm/c) 300 0 100 200 t/(fm/c) 300 400 3.3 The calculation of fusion/capture cross sections fus ( E ) 2 bmax p fus ( E, b)bdb Fusion excitation functions for 40,48Ca+40,48Ca 0 1000 1000 40 40 40 Ca+ Ca Experimental data taken in Refs M. Trotta et al., Phys. Rev. C 65 (2001) R011601 H.A Aljuwair et al., Phys. Rev. C 30 (1984) 1223 100 fus/mb fus/mb 100 48 Ca+ Ca 10 exp ImIQMD IQMD 1 10 exp(M. Trotta et al.) exp(H. A. Aljuwair et al.) IQMD(Wang et al.) ImIQMD(this work) (b) IQMD(this work) 1 (a) 0.1 0.1 48 50 52 54 56 58 60 62 64 66 68 70 48 50 52 54 56 Ec.m./MeV 1000 60 62 64 66 68 70 1000 48 48 Ca+ Ca 100 fus/mb 100 fus/mb 58 Ec.m./MeV 10 exp ImIQMD IQMD 1 10 40Ca+40Ca 40Ca+48Ca 48Ca+48Ca 1 (c) (d) 0.1 0.1 48 50 52 54 56 58 60 Ec.m./MeV 62 64 66 68 70 48 50 52 54 56 58 60 Ec.m./MeV 62 64 66 68 70 Positive Q value will lead to the enhancement of subbarrier fusion cross sections 3 fusion cross section 10 18 58 O+ Ni 16 60 O+ Ni 2 10 1 10 30 35 40 45 50 55 Ec.m./MeV 40,48Ca+124,116Sn, 16,18O+42,40Ca, 9,11Li+208,206Pb PRC 67 (2003) 061601R. suggested by V.I. Zagrebaev Capture cross sections for heavy systems 3 10 48 3 208 10 Ca+ Pb 48 238 Ca+ U cap/mb cap/mb 2 10 1 10 2 10 exp ImIQMD exp ImIQMD 0 1 10 170 175 180 185 Ec.m./MeV 190 195 200 10 180 190 200 210 220 Ec.m./MeV Experimental data taken from E.V Prokhorova et al., nuclexp/0309021 and W.Q Shen et al., Phys. Rev C 36 (1987) 115 230 240 3 10 2 10 cap/mb M. Dasgupta et al., Nucl. Phys A 734 (2004) 148 K. Nishio et al., Phys. Rev. Lett 93 (2004) 162701 16 1 10 16 208 O+ Pb exp ImIQMD 238 O+ U exp ImIQMD 0 10 70 80 90 100 110 75 80 Ec.m./MeV 90 95 Ec.m./MeV 3 10 48 244 Ca+ Pu 2 10 /mb M. G. Itkis, Yu. Ts. Oganessian, E. M. Kozulin et al., Proceedings on Fusion Dynamics at the Extremes, Dubna, 2000, edited by Yu. Ts. Oganessian and V. I. Zagrebaev page 93. 85 exp ImIQMD 1 10 0 10 190 195 200 205 210 Ec.m./MeV 215 220 225 230 Preliminary consideration on the calculation of the evaporation cross sections based on ImIQMD Formation probability at excitation energy E* is written as P PCN ( E*) 0 E E * 1 exp 0 Where E0 is the critical excitation energy depending on the reaction system, is the barrier distribution width, we can take it as (B B ) / 2 s d So the evaporation cross section can be denoted by bmax evap 2 bp fus ( E, b)PCN ( Ec.m. )Wsur ( Ec.m. , b)db 0 4. Production cross sections of the superheavy nuclei based on dinuclear system model • In dinuclear system mdoel, evaporation cross section is denoted by c ( Ec.m. ) 2 (2 J 1)T ( Ec.m. , J )PCN ( Ec.m. , J )Wsur ( Ec.m. , J ) J Cap. Q-fission Fission Schematic illustration of the fusion process • 2 /( 2Ec.m. ) , T(Ec.m.,J) is usually taken 0.5. A • Fusion probability PCN ( J ) P( A1 , E1 ( J ), int ( J )) dA1 BG 0 • The mass distribution probability P(A1,E1,t) is given by master equation dP( A1 , E1 , t ) WA , A' [d A1 P( A1' , E1' , t ) d A' P( A1 , E1 , t )] 1 1 1 dt A1' which is solved numerically in the model. If only considering the competition of neutron emission and fission, the survival probability Wsur with emitting X neutrons can be written as * x ( E , J) * * n i Wsur ( ECN , x, J ) P( ECN , x, J ) * * i 1 ( E , J ) ( E , J ) f i n i i Energy and angular-momentum dissipation are described by Fokker-Planck equation f p f u f l f 2 2 v p f 2 D p f vl f 2 Dl f t r r p rel p p l l Based on dinuclear system model, the production cross sections of superheavy nuclei in cold fusion reactions are studied systematically. 350 258 ABG 20 Rf 50 208 Ti+ Pb 124 Xe+ Sn 58 208 Fe+ Pb 130 136 Xe+ Xe 134 Bfus=29.96MeV 0 Vcn/MeV U/MeV 300 Bfus=14.29MeV 10 250 -10 200 Hpocket -20 150 -30 -1.0 -0.5 0.0 0.5 1.0 10 12 14 16 18 R/fm • In the DNS model, the compound nucleus formation is governed by the driving potential. U ( A1 , R) U LD ( A1 ) U LD ( A2 ) U LD ( A) U C ( A1 , R) U N ( A1 , R) • Height of the pocket are 6.39 MeV (0.61) 4.80 MeV (0.56) 1.70 MeV (0.04) 1.71MeV (0.02) 20 Feng, Jin, Fu et al., Chin. Phys. Lett., 22(4), 2005, 846 7 Bcoul 10 Bin=6 MeV 136 10 5 50 208 Bin=6 MeV 4 10 259 Xe+ Sn Rf+n 6 10 124 3 10 257 Ti+ Pb Rf+n 58 208 265 Fe+ Pb Hs+n 4 10 Bin=14 MeV Bin=14 MeV 2 10 10 2 10 exp vibr+transfer this work(4.49MeV(Moeller)) this work(3.84MeV(DTCSM)) vibr+transfer vibr+transfer this work(4.49MeV(Moeller)) this work(4.12MeV(Moeller)) 1 10 0 10 -1 10 -2 /pb /pb 3 134 124 257 136 124 259 Xe+ Sn Rf+n 1 10 0 10 -1 10 Xe+ Sn Rf+n 10 -2 exp vibr+transfer this work(5.27MeV(Moeller)) this work(2.88MeV(DTCSM)) vibr+transfer vibr+transfer this work(5.27MeV(Moeller)) 130 136 265 Xe+ Xe Hs+n 10 176 180 184 188 192 280 284 288 292 208 212 216 Ec.m./MeV 220 224 304 308 312 Ec.m./MeV Production cross sections for asymmetric and nearly symmetric reaction systems, comparison with coupled channel model which has included nucleon transfer and surface vibration is also shown. (V.Yu. Denisov Prog. Part. Nucl. Phys. 46 (2001) 303) 316 320 Improvement of dinuclear system model • In order to describe correctly the capture process, barrier distribution function method is included in the model. (P.H. Stelson, PLB 205 (1988) 190, V.I. Zagrebaev et al., PRC 65 (2001) 014607) The transmission coefficient is denoted as T ( E c . m. , J ) f ( B ) 1 2 B 1 exp J ( J 1) E 2 2R ( J ) ( J ) 2 dB 2 The barrier distribution B Bm exp , B Bm function satisfies the 1 normalization condition, f ( B) N 2 which is usually taken B Bm , B Bm exp as a asymmetric 2 Gaussian distribution form. f ( B)dB 1 • Here Bm=(B0+Bs)/2, B0 and Bs are the height of the Coulomb barrier and the saddle point respectively. Gaussian distribution function 2= (B0-Bs)/2, 1 is less than the value of 2 (usually 2 MeV). V. I. Zagrebaev PRC64 (2001)034606 208 48 Ca+ Pb 350 200 300 200 V/MeV 250 Vb()/MeV V(R,=0)/MeV V0=180.6 MeV V0=180.6 MeV 200 160 * V 0 *Vs 150 160 RB=12.22 fm 10 12 R/fm Vs=163.9 MeV =0.81 =0. 14 -0.5 0.0 100 0.5 1.0 8 10 1.5 12 R/ 1.5 1.0 14 fm 0.5 16 0.0 18 -0.5 20 22 -1.0 Capture cross section can be reproduced very well by introducing the barrier distribution function method 3 10 48 3 208 10 Ca+ Pb 2 10 2 10 cap/mb cap/mb 1 10 exp T=0.5 vibrational coupling ECCM H-W formula 0 10 -1 10 1 10 48 238 Ca+ U 0 10 -2 -1 10 10 170 180 Ec.m./MeV 190 200 160 180 200 Ec.m./MeV 220 240 Comparison of calculated evaporation residue cross sections with experimental data for 1,2,3,4 neutron emission 3 10 3 208 48 Ca+ Pb 2 256-xn capture 1n 2n 3n 4n 2n(Oganessian et al.) calculated results 1 10 0 10 -1 /mb 10 -2 10 48 2n 1n 1 10 -xn 1n 2n 3n 4n 2 10 -3 10 206 Ca+ Pb 2n 10 /nb 10 3n 4n 0 10 3n -4 10 4n 1n -5 10 -1 10 -6 10 -7 -2 10 10 5 10 15 20 25 30 E*/MeV 35 40 45 50 55 15 20 25 30 35 40 45 50 55 60 E*/MeV Experimental data taken from E.V Prokhorova et al., nucl-exp/0309021 Yu. Ts. Oganessian et al., Phys. Rev. C 64, 054606 (2001). 2n 10 /pb Production cross sections of superheavy nuclei 286-xn112, 292-xn114, 296-xn116 in 48Ca induced reactions and comparison with Dubna data 238 U 1 0.01 25 30 10 244 Pu 35 40 45 E*/MeV 50 2n 4n 2n 3n 0.1 (Yu.Ts. Oganessian et al., PRC 70 (2004) 064609) 10 4n 55 60 4n 248 Cm 3n 3n 5n /pb /pb 1 1 5n 0.1 0.1 0.01 0.01 25 30 35 40 45 E*/MeV 50 55 60 25 30 35 40 45 E*/MeV 50 55 60 Extension to multi-dimension degree of freedom for the driving potential • In the DNS model, we only consider the mass asymmetry degree of freedom, so there is some difficulties for describing the mass distribution of quasi-fission or fission, as well as reasonably showing the formation process of the compound nucleus. We need to consider the center of mass distance R and deformation degree of freedom et al. in the process of the superheavy compound nucleus formation. Y. Aritomo, M. Ohta, NPA 744 (2004) 3 5. Summary • The isospin dependent quantum molecular dynamics model is improved by introducing switch function method for the surface term and considering shell effect. Experimental fusion/capture cross sections can be reproduced very well using the improved model. Fusion barrier and neck dynamical behaviour in fusion process are studied systematically. • The dinuclear system model is improved by introducing the barrier distribution function method, dynamical deformation is considered in the capture process. Evaporation residue cross sections can be regenerated well for 1n,2n,3n 4n evaporation. Further studies are in progress!
© Copyright 2026 Paperzz