The Growth of China and India: Three Challenges for Latin American Agriculture D. Lederman Development Economics Research Group, The World Bank November 2007 IICA Technical Workshop, San José, Costa Rica This Presentation • Advertisement: Forthcoming book • Main channel: Commodity Prices • Correlations between China and Commodity Prices • Co-movement between LAC production and China/India • Who benefits? The First Challenge • Supply capacity. The Second Challenge • Innovation and Diversification. The Third Challenge Forthcoming Book -- Outline • “The Challenge of China’s and India’s Growth for Latin America” (under review, forthcoming in 2008?) – Edited by D. Lederman, M. Olarreaga & G. Perry • In three parts – Introduction (Lederman, Perry, Olarreaga) – Negative impact of Chinese and Indian competition in some industries and some LAC regions (Hanson & Robertson, Freund & Ozden, Feenstra & Kee, and Freund) – The growth of China and India is not a zero-sum game for LAC (Calderón; Lederman, Olarreaga, and Soloaga; Suescún; Cravino, Lederman, and Olarreaga) – Factor adjustment and specialization patterns (Casacuberta & Gandelman; Castro, Olarreaga, & Saslavsky; Lederman, Olarreaga & Rubiano) Our Book: The Growth of China & India Is Not a Zero-Sum Game • Evidence from the gravity model of trade using aggregate non-fuel bilateral merchandise data for LAC, 2000/4 – Large demand for LAC exports, but low supply elasticities – Little evidence of substitution effects in 3rd markets • Evidence from the KCM model of MNCs using aggregate and sectoral FCS global data, 1990/2003 – Little evidence of substitution effects in 3rd markets • But shifting RCAs toward NRs and Knowledgeintensive industries World Bank Commodity Price Indexes (1990=100) Jan/Dec 05 Jan/Dec 06 Jan/Oct 07 Price Trends: Selected Commodities China and Commodity Prices: Recursive Estimates of the Correlation between China’s I.P. and Prices 3.0 2.5 2.0 1.5 1.0 0.5 0.0 2001.12 2002.12 2003.12 2004.12 2005.12 -0.5 Agricultural Raw Materials Beverages Food Metals and Minerals Crude Petroleum India and Commodity Prices: Recursive Estimates of the Correlation between China’s I.P. and Prices 16.0 14.0 12.0 10.0 8.0 6.0 4.0 2.0 0.0 2001.12 2002.12 Agricultural Raw Materials 2003.12 Beverages Food 2004.12 Metals and Minerals 2005.12 Crude Petroleum China’s Appetite for Commodities Share in World Consumption Tin Zinc Soy bean Aluminium Copper Nickel 1990 2004 Sugar Petroleum 0 5 10 15 20 25 30 Commodity Prices, China, and Other Global Factors Agri Index Energy Index Ind. Met. Pre. Met. Soy Price Copper Index Index 0.48 0.00 0.64 0.00 0.70 0.00 0.81 0.00 0.10 0.55 0.33 0.05 0.12 0.47 US$ vs. EURO 0.34 0.02 0.15 0.29 0.13 0.38 0.09 0.51 -0.20 0.17 0.07 0.62 0.13 0.37 0.27 0.12 World %YoY 0.62 0.00 -0.23 0.11 -0.20 0.15 -0.17 0.23 -0.16 0.27 0.09 0.55 0.15 0.29 0.27 0.12 0.60 0.00 USA &YoY 0.05 0.74 0.44 0.00 0.66 0.00 0.75 0.00 0.30 0.03 0.31 0.03 0.17 0.25 0.84 0.00 -0.14 0.33 -0.09 0.53 China %YoY 0.19 0.17 -0.32 0.02 0.14 0.34 0.03 0.81 -0.02 0.87 -0.12 0.42 -0.07 0.65 -0.04 0.82 -0.03 0.84 0.30 0.03 0.02 0.92 Oil WTI Source: Bloomberg, %YoY: Growth on the Real GDP (annual variation) Commodity Indexes expressed in Total Returns. Commodity Prices expressed as variations Sample: quarterly data, 1995q1-2007q2; averages Europe &YoY Share of China and India in Latin American Trade, 1990 versus 2004 Share in exports Share in imports Peru Chile Chile Ecuador Argentina Peru Brazil Mexico Uruguay Colombia LAC Brazil Nicaragua LAC Costa Rica Bolivia Bolivia Uruguay Colombia Nicaragua Ecuador Argentina Mexico Costa Rica Guatemala Venezuela Venezuela Guatemala 0 5 1990 10 15 0 2 2004 4 1990 6 8 10 2004 Source: Author's calculations with United Nations' Comtrade Total LAC non-fuel merchandise exports to China and India grew by 39% and 25% per annum respectively (in nominal USD$) during 2000-2005. Fast growth due to demand (prices) or supply (quantities/varieties)? 0 .2 Correlation -.4 -.2 -.2 0 Correlation .2 .4 .4 .6 Are LA regions competing in the Same Products as China and India? 1990 1995 2000 2005 1990 1995 Year Corr(Andean,China) Corr(Andean,India) Corr(SCone,China) Source: Author's calculations 2005 Corr(SCone,India) -.1 -.2 0 .1 Correlation .2 .2 .3 .4 Source: Author's calculations 0 Correlation 2000 Year 1990 1995 2000 2005 1990 1995 Year Corr(CAmerica,China) Source: Author's calculations 2000 2005 Year Corr(CAmerica,India) Corr(Mexico,China) Corr(Mexico,India) Source: Author's calculations Source: Lederman, Olarreaga & Rubiano (forthcoming 2008, RWE). Regression Results – Diverging RCAs? LAC Andean Countries Central America Mexico Southern Cone RCA China -0.02 (0.04) 0.18 (0.08)* -0.11 (0.04)** 0.09 (0.06) -0.26 (0.05)** RCA India 0.16 (0.03)** -0.06 (0.06) 0.36 (0.06)** 0.03 (0.05) 0.36 (0.05)** Bilateral net exports of LAC to China -4.47e-06 (2.62e-06) 8.27e-07 (4.49e-07) 1.51e-06 (9.80e-07) -6.71e-08 (2.21e-07) 8.63e-09 (9.52e-08) Bilateral net exports of LAC to India -1.84e-06 (3.59e-05) 1.08e-07 (1.97e-06) -1.9e-05 (1.57e-05) -7.94e-07 (1.64e-06) 1.01e-07 (7.95e-07) -0.32 (0.36) 0.02 (0.37) -0.26 (0.23) -0.21 (0.06)** 0.09 (0.33) R^2 0.06 0.05 0.15 0.02 0.12 Observation s 8376 3236 2538 650 2587 Constant Regression Results – Diverging RCAs? LAC RCA China RCA India RCA China*unskilled RCA China*skilled RCA China*scien_K RCA China*nat_res RCA India*unskilled RCA India*skilled RCA India*scien_K RCA India*nat_res Unskilled Skilled Scientific Knowledge Natural Resources 0.03 (0.05) 0.25 (0.04)** -0.09 (0.05) 0.39 (0.06)** 0.04 (0.06) -0.21 (0.08)* 0.25 (0.04)** 0.23 (0.05)** -0.41 (0.05)** -0.37 (0.05)** 0.15 (0.06)* -0.21 (0.06)** 0.55 (0.07)** 2.44 (0.08)** Andean countries 0.05 (0.10) 0.31 (0.09)* -0.23 (0.09)* 0.38 (0.12)** 0.27 (0.11)* -0.26 (0.15) 0.15 (0.08) 0.34 (0.09)** -0.92 (0.10)** -0.27 (0.10)** 0.27 (0.11)** -0.20 (0.12) 0.81 (0.13)** 2.88 (0.15)** Central America -0.06 (0.07) 0.20 (0.06)* 0.07 (0.08) 0.22 (0.10)** 0.11 (0.09) -0.49 (0.13)** 0.37 (0.07)** 0.01 (0.09) -0.06 (0.08) -0.18 (0.09)** 0.14 (0.09) -0.71 (0.11)** -0.23 (0.10)** 1.93 (0.12)** Mexico Southern Cone 0.12 (0.07) 0.08 (0.06) -0.30 (0.07)** 0.42 (0.09)** -0.02 (0.09) 0.51 (0.14)** 0.03 (0.06) 0.18 (0.07)** -0.24 (0.08)** -0.04 (0.08) 0.15 (0.09) 0.06 (0.10) -0.09 (0.10) 0.21 (0.12) 0.05 (0.09) 0.27 (0.07)* -0.11 (0.08) 0.44 (0.11)** 0.17 (0.10) -0.01 (0.15) 0.45 (0.08)** 0.12 (0.09) -0.16 (0.09) -0.78 (0.10)** -0.09 (0.09) 0.11 (0.11) 0.85 (0.13)** 2.53 (0.15)** Who Benefits?: The First Challenge Who Benefits? Static Effects on Individuals (i.e., without changes in employment, quantity of sales, and quantities in consumption) Wi , s , c ( wi , s , c qi , s , c ci.s , c ) Ps Dynamic Effects on Individuals (i.e., with changes in employment, quantity of sales, and quantities in consumption caused by the change in prices of commodities) W ( w q c ) P (w / P) P (q / P) P (c / P) P Who Benefits? Some Data on Mexico (for 10% rise in price of corn) Source: Porto (2006). Who Benefits? Data from Panama on Net Producers of Sensitive Agricultural Commodities Total Population Indigenous Population Share of net Share of product Agricultural Share of Share of total sales in gross Income in total net Indigenous Population Agriculture Income. Income. Population Milk 0.86% 40.9% 43.4% 0.00% Cheese Meat 0.08% 4.5% 54.0% 0.00% 3.17% 50.8% 40.6% 5.10% Poultry 2.67% 11.8% 32.8% 7.20% Rice 1.32% 20.9% 44.1% Maize 3.54% 13.2% Pork 2.23% Tomato Total Net Producers Moderate Poverty Share of net Share of product Agricultural sales in gross Income in total Agriculture Income. net Income. 0.0% Share of product Share of net Share of Poor sales in gross Agricultural Income in Population Agriculture Income. total net Income. 0.0% 0.45% 41.0% 40.4% 0.0% 0.0% 33.2% 47.4% 0.03% 0.5% 66.8% 3.40% 38.9% 7.4% 47.3% 39.3% 4.99% 8.7% 3.39% 35.8% 13.3% 36.8% 2.57% 18.7% 34.5% 43.9% 5.28% 8.8% 33.8% 5.98% 10.1% 22.7% 36.1% 33.8% 4.04% 11.2% 44.9% 3.57% 14.7% 0.19% 41.4% 34.8% 26.1% 0.16% 0.2% 8.8% 0.22% 32.8% 3.80% 20.3% 60.4% 43.5% 5.96% 36.3% 49.2% 4.52% 43.2% 50.8% Who Benefits? Data from Guatemalan An Aside on CAFTA (a decline in the price of maize, but increases in prices of fruits) and Guatemalan Indigenous Populations The Supply Response: The Second Challenge The Supply Response: The Gravity Model with Heterogeneity in Demand and Supply Elasticities M ijt Yit Y jt Dij Bij ij Linderijt e i d i j d j t d t M ijt Yit d i China d jR Yit R Y jt d i China d jR Y jt R Dij Bij ij R R Linderijt d i China d jR Lindert ijt R e i d i j d j t d t R What’s the proper estimator? We present OLS (log-linear), Poisson, & Neg Bin. Gravity Results: Large Ch & Ind Demand Elasticities, Low LAC Supply Elasticities Table 1. Trade Demand and Supply Elasticities of GDP for LAC-China Trade – Non-Fuel Merchandise Trade Data OLS Poisson Negative Binomial Estimated Estimated Coeficient P-Value Coeficient P-Value Estimated Coeficient P-Value Andean Countries Ow n supply 0.51 0.00 0.28 0.14 0.38 0.19 China demand 3.40 0.00 3.01 0.00 4.42 0.00 Ow n supply 0.15 0.19 -0.11 0.52 -0.81 0.24 China demand 3.32 0.00 3.04 0.00 4.49 0.00 Ow n supply -0.03 0.89 -0.97 0.01 -2.10 0.00 China demand 3.20 0.00 2.95 0.00 4.25 0.00 Ow n supply 0.28 0.01 -0.03 0.70 -0.09 0.58 China demand 3.59 0.00 3.19 0.00 4.69 0.00 Caribbean Countries Central Am erica/Mexico Southern Cone Observations 21480 21480 21480 Gravity Results: Large Ch & Ind Demand Elasticities, Low LAC Supply Elasticities Table 2. Trade Demand and Supply Elasticities of GDP for LAC-India Trade – Non-Fuel Merchandise Trade Data OLS Poisson Negative Binomial Estimated Estimated Coeficient P-Value Coeficient P-Value Estimated Coeficient P-Value Andean Countries Ow n supply 0.29 0.35 0.28 0.25 -0.27 0.56 India demand 1.84 0.00 1.62 0.00 2.99 0.00 Ow n supply -0.26 0.02 -0.21 0.21 -1.47 0.04 India demand 1.87 0.00 1.55 0.00 2.78 0.00 Ow n supply -0.34 0.08 -1.40 0.00 -2.47 0.00 India demand 1.76 0.00 1.74 0.00 2.72 0.00 Ow n supply 0.39 0.00 -0.08 0.21 -0.09 0.50 India demand 1.78 0.00 1.88 0.00 2.90 0.00 Caribbean Countries Central Am erica/Mexico Southern Cone Observations 21480 21480 21480 Substitution Effects in 3rd Markets? The Gravity Model with Heterogeneity in Ch/Ind Substitution, Aggregate Data, 2000/4 M ijt Yit Y jt Dij Bij ij Linderijt e i d i j d j t d t X China M X M , z ,t China, z ,t China, j ,t China, j ,t R R R R d X d M d X d M jR China, z,t jR China, z,t jR China, j ,t jR China, j ,t R R R R Note the Four Channels through which trade can affect LAC trade with 3rd Markets: USA MEX CHINA Aggregate Trade: Little (robust) Evidence of Substitution Effects in 3rd Markets Table 3: Impact of China's Trade Flows on LAC Non-Fuel Exports to Third Countries Negative OLS Poisson Binom ial Estimated Estimated Estimated Coeficient P-Value Coeficient P-Value Coeficient P-Value Andean Countries China exports to third countries 0.06 0.10 0.11 0.38 0.14 0.15 China imports from third countries 0.01 0.65 0.10 0.30 0.06 0.38 China Exports to Andean -0.07 0.25 0.21 0.25 0.03 0.83 China Imports from Andean -0.05 0.10 0.21 0.00 0.03 0.64 China exports to third countries -0.14 0.00 0.14 0.31 -0.06 0.74 China imports from third countries -0.04 0.27 0.08 0.33 0.04 0.76 China Exports Caribbean -0.04 0.66 0.27 0.29 0.15 0.67 China Imports from Caribbean 0.00 0.82 0.02 0.46 0.09 0.03 China exports to third countries 0.00 0.91 0.85 0.00 0.16 0.19 China imports from third countries -0.04 0.15 -0.25 0.00 0.00 0.98 China Exports to Central America -0.03 0.31 -0.04 0.71 0.01 0.93 China Imports from Central America 0.03 0.10 0.06 0.40 0.10 0.08 China exports to third countries 0.21 0.00 0.02 0.87 0.14 0.14 China imports from third countries 0.02 0.51 0.19 0.05 0.06 0.33 China Exports to Southern Cone 0.05 0.56 0.05 0.72 0.30 0.08 China Imports from Southern Cone 0.02 0.64 0.45 0.00 0.21 0.09 Caribbean Countries Central Am erica/Mexico Southern Cone Observations 15440 15440 15440 Foreign Capital: The Growth of China and India Is Not a Zero-Sum Game for LAC – Some Data Foreign Capital Stocks (FCS) as a Share of GDP in LAC Relative to China and India, 2003 20 15 10 5 0 na i t n ge r A il z a Br ile h C ia la or ca b i d a a R lv em lom t ta a o a s S C Co Gu El China and Hong Kong India xic e M o ela u ez n Ve Foreign Capital: The Empirical Augmented KCM Allows for Horizontal and Vertical Motivations for FDI FCSijt f ( SUMGDPijt , GDPDIFSQij,t , SKDIFFijt , SKDIFF _ NEGijt , F _ COST jt , T _ COSTit ,T _ COST jt , DISTijt , FCSiChinat, FCS _ LACiChinat.FCSiIndiat, FCS _ LACiIndiat) Note the data constraint only one channel through which China can affect FCS in LAC from 3rd Markets: USA MEX CHINA What’s the proper estimator? We present OLS (log-linear), Poisson, & Neg Bin. Some Results: Little Evidence of Substitution Effects in the FCS Data Table 4: China and India Effects across LAC Sub Regions Aggregate Data U.S. Data U.S. Data: Manufacturing OLS Poisson Neg. Bin. OLS Poisson Neg. Bin. OLS Poisson Neg. Bin. 0.45 0.22 0.13 0.02 0.20 0.05 -0.33 0.27 -0.06 [0.00]* * [0.06]* [0.02]** [0.47] [0.31] [0.14] [0.03]* * [0.29] [0.56] 0.34 0.18 0.02 0.01 -0.01 0.01 0.86 -0.10 0.16 [0.01]* * [0.45] [0.70] [0.64] [0.83] [0.83] [0.00]* * [0.89] [0.46] 0.48 0.29 0.18 0.03 0.11 0.13 0.07 0.37 -0.01 [0.00]* * [0.02]** [0.00]** [0.40] [0.15] [0.02]** [0.73] [0.59] [0.94] 0.35 0.19 0.04 -0.02 -0.01 0.00 -0.03 -0.35 0.17 [0.00]* * [0.06]* [0.58] [0.77] [0.78] [0.97] [0.94] [0.26] [0.60] 0.24 0.20 0.15 0.08 0.09 0.09 0.24 0.43 0.09 [0.02]* * [0.01]** [0.00]** [0.00]* * [0.02]** [0.03]** [0.12] [0.01]** [0.63] 0.59 0.28 0.15 -0.02 0.01 0.07 -0.37 -0.58 0.07 [0.00]* * [0.02]** [0.00]** [0.60] [0.90] [0.17] [0.13] [0.05]* [0.78] Observations 9782 9295 9295 6690 4971 4971 6690 4971 4971 Number of Groups 1311 1055 1055 873 603 603 873 603 603 China's Effect in Central American Countries India's Effect in Central American Countries China's Effect on Andean Countries India's Effect on Andean Countries China's Effect in Southern Cone's Countries India's Effect in Southern Cone's Countries p-values in brackets correspond to the F-test of the null hypothesis that the effect = 0. All estimates come from estimations of the fully specified CKM, but other parameter estimates are not reported. * significant at 5%; ** significant at 1%. Innovation and Diversification: The Third Challenge Export Diversification during the Growth of China and India 0.12 0.1 0.08 0.06 0.04 0.02 Herfindahl Herfindahl excluiding ISIC 220 and 353 2004 2003 2002 2001 2000 1999 1998 1997 1996 1995 1994 1993 1992 1991 0 1990 Herfindahl Index of Concentration Latin America & Caribbean Export Diversification during the Growth of China and India 0.35 0.3 0.25 0.2 0.15 0.1 0.05 Herfindahl Herfindahl excluiding ISIC 220 and 353 2004 2003 2002 2001 2000 1999 1998 1997 1996 1995 1994 1993 1992 1991 0 1990 Hefindahl Index of Concentration Andean Export Diversification during the Growth of China and India 0.12 0.1 0.08 0.06 0.04 0.02 Herfindahl Herfindahl excluiding ISIC 220 and 353 2004 2003 2002 2001 2000 1999 1998 1997 1996 1995 1994 1993 1992 1991 0 1990 Herfindahl Index of Concentration Southern Cone Export Diversification during the Growth of China and India Mexico 0.2 0.15 0.1 0.05 Herfindahl Herfindahl excluiding ISIC 220 and 353 2004 2003 2002 2001 2000 1999 1998 1997 1996 1995 1994 1993 1992 1991 1990 0 Export Diversification during the Growth of China and India Central America 0.35 0.3 0.25 0.2 0.15 0.1 0.05 Herfindahl Herfindahl excluiding ISIC 220 and 353 2004 2003 2002 2001 2000 1999 1998 1997 1996 1995 1994 1993 1992 1991 1990 0 For Future Research: Not a Zero-Sum Game in Innovation and Patenting? Some Data Patents Granted by the USPTO, 1960-2003 450 350 300 250 200 150 100 50 Year China India LAC 2003 2001 1999 1997 1995 1993 1991 1989 1987 1985 1983 1981 1979 1977 1975 1973 1971 1969 1967 1965 0 1963 Number of patents 400
© Copyright 2026 Paperzz