Simultaneous equations Revision 1 Solve the following pair of simultaneous equations using the substitution method. x 4 2y 5 x 2 y 32 x 4 2y 5 x 2 y 32 1 2 Substitute 1 into 2 5 4 2 y 2 y 32 20 10 y 2 y 32 12 y 12 y 1 Substitute y 1 into (1) x 4 2 1 x 42 x 6 Solution: (6, 1) 2 Solve the following pair of simultaneous equations using the substitution method y 3x 7 2 x 5 y 48 y 3x 7 2 x 5 y 48 Substitute 1 into 2 2 x 5 3 x 7 48 2 x 15 x 35 48 13x 13 x 1 Substitute y 1 into 1 y 3 1 7 y 10 Solution: (1, 10) Page 1 1 2 5 Solve the following pair of simultaneous equations using the substitution method. y 2 x 22 3 x 4 y 53 y 2 x 22 3x 4 y 53 1 2 Substitute (1) into 2 3x 4 2 x 22 53 3x 8 x 88 53 5 x 35 x7 Substitute x 7 into 1 y 2 7 22 y 14 22 y 8 Solution: (7, 8) 6 Solve the following pair of simultaneous equations using the substitution method. 1 x 1 3 y 4 6x 2 y 5 1 1 3 y 4 6x 2 y 5 x Substitute (1) into 6 1 2 2 1 1 3 y 2 y 5 4 6 1 3 y 8 y 20 6 18 y 8 y 20 26 y 26 y 1 Substitute y 1 into 1 1 1 3 1 4 1 x 1 3 4 1 x 2 4 1 x 2 1 Solution: , 1 2 x Page 2 7 Solve the following pair of simultaneous equations using the elimination method. 4 x y 12 2 x y 12 4 x y 12 2 x y 12 1 2 : 1 2 6 x 24 x4 Substitute x 4 into 2 2 4 y 12 8 y 12 y4 Solution: (4, 4) 8 Solve the following pair of simultaneous equations using the elimination method. 4 x y 5 4 x 2 y 14 4 x y 5 4 x 2 y 14 1 2 : 1 2 3y 9 y3 Substitute y 3 into 1 4 x 3 5 4 x 8 x 2 Solution: (2, 3) 9 Solve the following pair of simultaneous equations using the elimination method. 5 x 2 y 24 3 x y 1 (2) 2: (1) (3): 5 x 2 y 24 (1) 3x y 1 ( 2) (3) 6 x 2 y 2 11x 22 x2 Substitute x 2 into 2 3 2 y 1 6 y 1 y 7 Solution: (2, –7) Page 3 10 Solve the following pair of simultaneous equations using the elimination method. 8x 9 y 0 14 x 12 y 3 8x 9 y 0 14 x 12 y 3 (1) 4: 32 x 36 y 0 (2) 3: 42 x 36 y 9 (4) (3): 1 2 3 4 10 x 9 9 x 10 9 Substitute x into 1 10 9 8 9y 0 10 72 9y 0 10 36 9y 5 4 y 5 4 9 Solution: , 5 10 Page 4 3 Solve the following pair of simultaneous equations using a graphical method: y 1 4x y 2x 7 Use Analysis and G-solve to find the Intersection The two lines intersect at (1, 5). Page 5 4 Solve the following pair of simultaneous equations using the substitution method: x 1 y 2 x 3 y 17 1 2 x 1 y 2 x 3 y 17 Substitute (1) into 2 2 1 y 3 y 17 2 2 y 3 y 17 5 y 15 y 3 Substitute y 3 into 1 x 1 3 x4 Solution: (4, 3) 5 Solve the following pair of simultaneous equations using the elimination method: x 4y 6 3 x 6 y 15 (1) 3: (2) (3): x 4y 6 (1) 3x 6 y 15 ( 2) 3 x 12 y 18 (3) 6 y 3 y 1 2 1 into 1 2 1 x 4 6 2 x26 Substitute y x4 1 Solution: 4, 2 Page 6 6 Solve the following pair of simultaneous equations using the elimination method: 4 x 9 y 7 3 x 6 y 4 4 x 9 y 7 (1) 3 x 6 y 4 ( 2 ) (1) 3 : 12 x 27 y 21 (3) (2) 4 : 12 x 24 y 16 ( 4) (3) (4) : 3 y 5 5 2 y 1 3 3 5 substitute y into 1 3 5 4 x 9 7 3 4 x 15 7 4x 8 x 2 2 Solution : 2, 1 3 7 Find two numbers whose sum is 23 and whose difference is 27. Let the two numbers be x and y. x y 23 1 x y 27 (1) (2) : 2 2 x 50 x 25 Substitute x 25 into 1 25 y 23 y 2 The two numbers are 25 and 2. 8 A rectangular swimming pool has a perimeter Let x be the width of the pool. of 50 metres. The length is 9 metres more than The length is x + 9. the width. What are the dimensions of the pool? Perimeter = 50 50 2 x 2 x 9 50 2 x 2 x 18 32 4 x x8 Width is 8 metres. Length is 17 metres. Page 7 9 A moneybox contains only 10c and 20c coins. Let x be the number of 10c coins. If there are 54 coins altogether, totalling $8.60, Let y be the number of 20c coins. how many of each type of coin are there? x y 54 1 10 x 20 y 860 (2) 10: x 2 y 86 (3) (1): 2 3 y 32 Substitute y 32 into 1 x 32 54 x 22 Moneybox contains 22 × 10c coins and 32 × 20c coins. 10 Nicholas buys 4 pears and 3 apples for $2.75. Nadia buys 7 pears and 5 apples for $4.70. How much does each type of fruit cost? Let p represent the cost of a pear and a represent the cost of an apple (in cents). 4 p 3a 275 1 2 20 p 15a 1375 3 21 p 15a 1410 4 7 p 5a 470 (1) 5: (2) 3: (4) (3):p 35 Substitute p 35 into 1 4 35 3a 275 140 3a 275 3a 135 a 45 A pear costs 35 cents and an apple 45 cents. Page 8 11 Three adults and 5 children pay $62.30 to enter Let a represent an adult’s entry fee and the zoo, whereas 4 adults and 3 children pay c represent a child’s entry fee (in cents). $60.70. What was the entry fee for each adult 3a 5c 6230 1 and each child? 4a 3c 6070 2 (1) 3: 9a 15c 18 690 (2) 5: 20a 15c 30350 (4) (3) : 3 4 11a 11 660 a 1060 Substitute a 1060 into 1 3 1060 5c 6230 3180 5c 6230 5c 3050 c 610 Entrance fees are adults $10.60 and children $6.10. Page 9
© Copyright 2026 Paperzz