Continuous and discrete variables: the best of both worlds Alexei Ourjoumtsev CNRS Laboratoire Charles Fabry, Institut d’Optique, Palaiseau Describing light Discrete Photons Continuous Wave Describing light Discrete Look for : Photons Number & Coherence Continuous Wave Amplitude & Phase (polar) Quadratures X & P (cartesian) Describing light Discrete Look for : Describe with: Photons Continuous Wave Amplitude & Phase (polar) Number & Coherence Quadratures X & P (cartesian) Wigner function Density matrix ρn,m W(X,P) ΔX. ΔP ≥ ½ Describing light Discrete Look for : Describe with: Measure by : Photons Number & Coherence Density matrix Counting: Avalanche photodiodes, Visible light photon counters, Thermal edge sensors… Continuous Wave Amplitude & Phase (polar) Quadratures X & P (cartesian) Wigner function Describing light Discrete Look for : Describe with: Measure by : Photons Continuous Amplitude & Phase (polar) Number & Coherence Quadratures X & P (cartesian) Wigner function Density matrix Counting: Avalanche photodiodes, Visible light photon counters, Thermal edge sensors… Wave Demodulating : Homodyne Detection Local oscillator Quantum state V1-V2 Xθ = X cosθ +P sinθ Describing light Discrete Look for : Describe with: Measure by : Photons Continuous Amplitude & Phase (polar) Number & Coherence Quadratures X & P (cartesian) Wigner function Density matrix Counting: Wave Demodulating : Homodyne Detection (€, 98%) Avalanche photodiodes, Visible light photon counters, Thermal edge sensors… Local oscillator Quantum state V1-V2 Xθ = X cosθ +P sinθ θ=0° θ=45° θ=90° Describing light Discrete Look for : Describe with: Measure by : « Simple » States Photons Number & Coherence Density matrix Counting: APD, VLPC, TES... Fock States Sources : - Single Atoms - NV diamond centers - Parametric fluorescence .... Continuous Wave Amplitude & Phase (polar) Quadratures X & P (cartesian) Wigner function Demodulating : Homodyne Detection Describing light Discrete Look for : Describe with: Measure by : « Simple » States Photons Number & Coherence Continuous Amplitude & Phase (polar) Quadratures X & P (cartesian) Wigner function Density matrix Counting: APD, VLPC, TES... Demodulating : Homodyne Detection Fock States Sources : - Single Atoms - NV diamond centers - Parametric fluorescence .... Wave Gaussian States Sources : Lasers : coherent states P Non-linear media : squeezed states P α α θ X θ X Describing light Discrete Look for : Describe with: Measure by : « Simple » States Photons Number & Coherence Density matrix Counting: APD, VLPC, TES... Fock States Continuous Wave Amplitude & Phase (polar) Quadratures X & P (cartesian) Wigner function Demodulating : Homodyne Detection Gaussian States The best of both worlds Discrete : • Easy to process • Robust against noise & losses • Allow postselection Continuous • Simple sources & detectors • More bits per symbol • Richer structure The best of both worlds Discrete : Continuous • Easy to process • Robust against noise & losses • Allow postselection • Simple sources & detectors • More bits per symbol • Richer structure Possible combination : QIP with coherent-state qubits |+ =|α |- = |-α Features : • Possible to distinguish all 4 Bell states • Heisenberg-limited precision measurements • Candidates for loophole-free Bell tests Basic requirements : • |α |-α • a|α + b|-α • |α, α |-α, - α • qubit rotations •… Discrete-variable operations Continuous-variable states Photon subtraction from squeezed vacuum Ideas Dakna et al, PRA 55, 3184 (1997) Optical Parametric Amplifier â R<<1 OPA Non-resolving counter (APD) 1 photon subtracted : |α - |-α |α|²~1 Vacuum Squeezed vacuum Photon-Subtracted Squeezed Vacuum Schrödinger’s kitten Ideas Dakna et al, PRA 55, 3184 (1997) Optical Parametric Amplifier ân R<<1 OPA Resolving counter Vacuum Squeezed vacuum n photons subtracted : |α|-α Photon-Subtracted Squeezed Vacuum Schrödinger’s cat Experiments Femtosecond pulses OPA Broadband Multimode Continuous-wave OPA n Easy Timing Narrowband Singlemode n Complex Timing n=1 : 2006, IOGS (Palaiseau) Science 312, 83 Fidelity = 70% |α|² = 0.8 n=1 : 2006, NBI (Copenhagen) PRL 97, 083604 Fidelity = 53% |α|² = 1.7 n3 : 2010, NIST (Boulder) Arxiv: 1004.3656 Fidelity = 59% |α|² = 3 n=2 : 2008, NICT (Tokyo) PRL 101, 233605 Fidelity = 60% |α|² = 2 Compromizes (fs) Pulses : Not too short / Not too long Repetition rate : Not too fast / Not too slow Crystal : Not too thin / Not too thick APD filters : Not too narrow / Not too broad… a,b,c,d simple functions of the experimental parameters Analytic model Radon transform Correct for Homodyne Losses Coherent-state qubits â R<<1 |α -|-α |α+|-α APD Coherent-state qubits A*â + B*1 R<<1 |α+|-α D() R<<1 A(|α -|-α) + B(|α+|-α) = a|α + b|-α |/R APD Experiment : |α+|-α |sqz 2010, NICT (Tokyo) arXiv:1002.3211 Coherent Bell states Local preparation R=50% |α2 -|-α 2 |α,α-|-α,-α Coherent Bell states Local preparation Losses R=50% |α2 -|-α 2 |α,α-|-α,-α Coherent Bell states Local preparation Non-local preparation Losses R=50% |α2 -|-α 2 | α + |-α |α,α-|-α,-α â1-â2 R<<1 50/50 | α + |-α APD R<<1 |ψ0 = |α,α-|-α,-α Coherent Bell states Local preparation Non-local preparation Losses R=50% | α + |-α |α,α-|-α,-α |α2 -|-α 2 â1-eifâ2 R<<1 50/50 | α + |-α f APD R<<1 |ψf = cos f |α,α -isin f |α,-α 2 2 +isin f |-α,α -cos f |-α,-α 2 2 Experiment : |α+|-α |sqz |α|²=0.65 f=/2 2009, IOGS (Palaiseau) Nature Phys. 5, 189 Coherent Bell states Local preparation Non-local preparation | α + |-α Losses R=50% |α,α-|-α,-α â1-eifâ2 R<<1 50/50 | α + |-α |α2 -|-α 2 f APD R<<1 |ψf = cos f |α,α -isin f |α,-α 2 2 +isin f |-α,α -cos f |-α,-α 2 2 Teleportation: n1 n2 |ψf a|α + b|-α [cos f a-isin f b] |α 2 2 +[cos f b-isin f a] |-α 2 2 Qubit rotation Beyond coherent qubits Beyond coherent qubits [â,â†]0 â ↠R<<1 G-1<<1 OPA APD APD 2007, LENS (Florence) Science 317, 1890 Beyond coherent qubits Gaussian entanglement distillation [â,â†]0 â ↠R<<1 G-1<<1 OPA APD APD 2007, LENS (Florence) Science 317, 1890 R<<1 OPA R<<1 2010, NICT (Tokyo) Nature Phot. 4, 178 APD APD Beyond coherent qubits Gaussian entanglement distillation [â,â†]0 â ↠R<<1 G-1<<1 OPA APD R<<1 OPA APD 2007, LENS (Florence) Science 317, 1890 R<<1 2010, NICT (Tokyo) Nature Phot. 4, 178 Noiseless amplification 2010, QOIL (Brisbane) Nature Phot. 4, 316 APD |α R’=50% |1 R APD 2010, IOGS (Palaiseau) |gα PRL 104, 123603 APD APD Continuous-variable operations Discrete-variable states Homodyne measurements on photon-number states Fock state qubits a|0+ b|1 |1 2004, Univ. Konstanz PRL 92, 047903 a|0+ b|1 Homodyne X |0 |1 X Squeezed Schrödinger cats R=50% Homodyne |X/2 |< |2n |2n+1 /2 |n X /2 Squeezed Schrödinger cats |α|-α (x)=xne-x²/2 R=50% Homodyne |X/2 |< |2n |2n+1 /2 |n X /2 • Ideally, F>99% • Squeezed by 3dB • ||²n • parityn Squeezed Schrödinger cats Experiment: |2 R=50% 2007, IOGS (Palaiseau) Nature 448, 784 Homodyne |X/2 |<0.1 Homodyne preparation or photon subtration? Theory : Homodyne exponentially more efficient Experiments : Homodyne ||²2.6 6Hz Photon subtraction ||² 2 <1Hz ||² 3 5mHz Conclusion Discrete : Continuous • Easy to process • Robust against noise & losses • Allow postselection • Simple sources & detectors • More bits per symbol • Richer structure Combining the best of both worlds becomes possible in practice Growing number of groups involved Collaborations welcome!
© Copyright 2026 Paperzz