COMPLEX INTEGRATION PART-B 1. State Cauchy’s integral formula. Solution: If f(z) is analytic inside and on a simple closed curve C and ‘a’ be any point inside C then f (z) dz 2i.f (a) where the integration being taken in c za the positive direction around C. 2 2. Evaluate z 1 dz where c is (z 2)(z 3) z 1 C Solution: Cauchy’s integral formula is f (z) dz 2i.f (a) [ a lies inside C] za c a=2 and 3 lies outside the circle By Cauchy’s integral formula z 1. z2 1 (z 2)(z 3)dz =0 C 2 3. Evaluate 3z 7z 1dz where c is (z 3) z 2 C Solution: The pole is at z=3 lies outside the circle By Cauchy’s integral formula C z 2. 3z 2 7z 1 dz =0 (z 3) 2 4. Evaluate dz where c is (z 1)(z 3) z 1 2 C Solution: z 1 2 is a circle whose centre is 1 and radius 2. z =-3 lies outside the circle z 1 2 z=1 lies inside the circle z 1 2 2 dz (z 1)(z 3) C 2 z 3 1 (z 1) dz 2if (1) 2i 2 i C SNSCT-DEPT OF MATHEMATICS Page 1 COMPLEX INTEGRATION 5. Evaluate (z 2 2z)dz where c is z 1 C Solution: Let z e i dz ieid 2 (z 2z)dz 2 [(e c i 2 ) 2ei ]ieid 0 2 i e 3i 2ei2 d 0 2 e 3i 2ei2 i 2i 3i 0 e 3i ei2 3 2 0 2 cos 3 i sin 3 2 cos 2 i sin 2 0 3 0 1 (1 0) (1 0) [(1 0) (1 0)] 3 0 z 2 2z [or] (z 2 is analytic inside and on C. 2z)dz =0 by Cauchy’s integral formula. C 6. Evaluate (z 3)4dz where c the circle is z3 4 C Solution: Let z 3 4ei z 4ei 3 dz 4ieid (z 3) dz 4 C 2 4 5 4e 4 i 4ieid 0 4 0 5 2 5 i5 e id cos5 i sin 502 SNSCT-DEPT OF MATHEMATICS Page 2 COMPLEX INTEGRATION 7. Evaluate dz where c is the circle z4 z 2. C Let f z 1 and z 4 lies outside of the circle By cauchy’s integral formula, we have C z 8. Evaluate e dz where c is the circle z1 z 1 1. 2 z 1 1. 2 C Let f z ez and z 1 lies outside of z 2 dz 0. z4 z By cauchy’s integral formula, we have e dz 0 . z1 C 9. Evaluate C dz z3 Let f z 1 and where c is z 3 z 1. lies outside of the circle z 1. By cauchy’s integral formula, we have dz 0 z3 C 10. Evaluate dz C z 3 f z C z 2 2 C z 3 2 z 1. 2if ' a a=3 lies outside dz where c is the circle z 1. 0 11. Evaluate cos z dz if c is z 1 z 2 C z 1 lies inside the circle z 2 w.k.t cauchy’s integral formula is f z C z = 2i 1 2if a a 1, f z cos z f a cos a f 1 cos 1 = 2i SNSCT-DEPT OF MATHEMATICS Page 3 COMPLEX INTEGRATION 12. Using cauchy’s integral formula evaluate cos z 2 C z 1 z 2 dz where c is z 3 2 z 1 lies inside the circle z 2 lies inside the circle the given integral can be re-written as cos z 2 z 2 dz z 1 cos z 2 z2 cos 1 f 1 1 1 1 f z By Cauchy’s integral formula cos z 2 z 2 dz 2i 1 2i z 1 13. Expand log(1+z) Taylor’s series about z=0. Solution: f (z) log(1 z) f (0) log1 0 1 f (z) f (0) 1 1 z 1 f (z) f (0) 1 (1 z)2 2(1 z) 2 f (z) f (0) 2 4 (1 z) (1 z)3 The Taylor series of f(z) about the point z=0 is given by f (z) f (0) z z2 z3 f (0) f (0) f (0) ..... 1! 2! 3! 0 z z2 z3 2 ... 1! 2! 3! z z2 z3 ... 2 3 14. Expand 1 z2 at z=1 in a Taylor’s series. Solution: 1 f (1) 1 z2 1 f (z) f (1) 1 z 22 f (z) f (z) 2(z 2) 2 f (1) 2 z 2 z 23 The Taylor series of f(z) about the point z=0 is given by 4 SNSCT-DEPT OF MATHEMATICS Page 4 COMPLEX INTEGRATION z a f (a) .....,here(a 1) za f (a) 1! 2! 2 f (z) f (a) z 1 f (1) ..... z 1 f (1) 1! 2! 2 f (1) z 1 2 ( 2) ... 1 (z 1)( 1) 2 2 1 (z 1) (z 1) ...... 15. Expand z 1 z1 in Taylor’s series about z=1. Solution: f (z) f (z) z 1 f (1) 0 z1 z 1 z 1 f (z) z 1 2 2 2 z 1 z 1 4 2 z 1 4 z 1 So the Taylor’s series for f (1) 2 3 2 1 4 2 f (1) z 1 z1 4 1 8 2 about z=1 is z a za f (a) f (a) .....,here(a 1) 1! 2! 2 f (z) f (a) z 1 z 1 f (1) f (1) ..... 1! 2! 2 f (1) 1 1 z 1 0 (z 1) ... 2 2 2 2 1 16. Find Laurent’s series of f (z) z 2e z about z=0. Solution: Clearly f(z) is not analytic at z=0. 1 f (z) z 2e z 2 1 1 z z z 2 1 .... 1! 2! z 1 z 2 .... 1! 2! 17. Obtain the Laurent expansion of the function ez in the neighbourhood of z 1 2 its singular point. Hence find the residue at the point. Solution: Here z=1 is a singular point. SNSCT-DEPT OF MATHEMATICS Page 5 COMPLEX INTEGRATION f (z) ez (z 1)2 e z 1 1 (z 1)2 ez 1 .e1 (z 1)2 (z 1) (z 1)2 1 ..... 2 1! 2! (z 1) 1 1 1 e1 ..... 2 (z 1) 2 (z 1) e1 Residue at the point z=1 is the coefficient of Resf (z),1 e 1 z 1 18. State Cauchy’s Residue theorem. If f(z) be analytic at all points inside and on a simple closed curve C,except for a finite number of isolated singularities z1 ,z 2 ,.....,zn inside C,then f (z)dz 2i[sum of the residues of f (z) at z1 ,z 2 ,....,zn ] c n 2i R i where R i is the residue of f (z) at z z i i 1 19. Calculate the residue of f z f z e 2z z 12 at the pole e 2z z 1 Given Z=-1 is a pole of order 2 2 f z z 1 Res d e 2z z 12 z1 dz z 12 lim d 2z e z1 dz lim lim 2e 2z z 1 2 2e z2 20. Find the residue of f z z 12 z 2 at z=-2. Z=1 is a pole of order 2 Z=-2 is a pole of order 1 f z z 2 Res lim z 2 z 2 lim z 12 z 2 z2 z2 z 2 z 12 22 2 12 4 2 9 3 SNSCT-DEPT OF MATHEMATICS Page 6 COMPLEX INTEGRATION f z z 1 z z 2 21. Find the residue of Z=0 is a pole of order 1 Z=2 is a pole of order 1 z 1 z0 zz 2 Re sf z z 0 lim z Re sf z z 2 lim z 2 z 2 z 1 3 zz 2 2 Z=2 is a simple pole Re sf z z 2 lim z 2 z 2 4 z 3 z 2 1 2 f z 22. Obtain the residues of the function Z=-1 is a pole of order 1 Z=-2 is a pole of order 1 z3 z 1z 2 at its poles. z 3 4 z 1z 2 z1 z 3 5 Re sf z z 2 lim z 2 z 1z 2 z2 Re sf z z 1 lim z 1 23. Consider the function f z f z sin z z4 sin z z4 .Find the pole and its order. 1 z3 z5 z .......... 3 5 z 4 1 z2 z4 1 .......... . 3 5 z 3 Z=0 is a pole of order 3 24. Define pole and simple poles. A point z=a is said to be a pole f(z) of order n if we can find a positive lim z an f z 0 za integer n such that A pole of order one is called a simple pole. f z 1 z 42 z 33 z 1 Example : Hence z=1 is a simple pole of order 1 Z=4 is a simple pole of order 2 Z=3 is a simple pole of order 3. SNSCT-DEPT OF MATHEMATICS Page 7 COMPLEX INTEGRATION 25. Find the regularities of the function f z f z Given cot z z a3 cot z z a 3 cos z sin z z a 3 Singular points are poles and are given by Dr=0. sin z 0, z a 3 0 z a is a sin gular pole of order 3 sin z sin n sin n wheren 0,1,2,........ z n n z n 0,1,2,........ are simple poles . 26. Find the principal part and residue at the pole of f z 2z 3 z 22 ( 2z 3)( z 2) 2 [since principal part is negative powers] ( z 2) 2 z 2 is a sin gular pole of order 2 ( 2 z 3) d ( z 2) 2 . 2 z 2 dz ( z 2) 2 dz where C is the square with vertices (0,0),(1,0),(1,1) and (0,1). z2 Re sf ( z )z 2 Lim 27. Evaluate c Given z2 dz c Heref ( z ) 1 a 2 lies outside ByCauchy ' sin tegralform ula z 2 0. dz c ************************* SNSCT-DEPT OF MATHEMATICS Page 8 COMPLEX INTEGRATION 28. Find the residue of tan z at z f ( z ) tan z 2 sin z P( z ) cos z Q( z ) P (a ) Re sf ( z )z a Q ' (a ) a 2 P( z ) sin z Q( z ) cos z P sin 1 Q ' ( z ) sin z 2 2 Q ' sin 1 2 2 Re sf ( z )z 2 P (a ) ' Q (a ) 1 1 1 29. Find a contour C for which ez (z 1) 2 (z 1)dz C The poles of f(z) are given by z 1, z 1 z 1 is a simple pole z 1is a pole of order 2 e1 e ez Re sf ( z )z 1 Lim ( z 1) . 4 z 1 ( z 2) 2 ( z 1) 4 Re sf ( z )z 1 Lim d z 1 dz ez ( z 1) 2 . ( z 1) 2 ( z 1) d e z ( z 1) e z z 1 dz ( z 1) 2 Lim e 1 [2 1] 3 4 4e f ( z )dz 2i(sum of the residues ) C 4e 2 12 e 3 2i 2i 16e 4 4e 30. Evaluate sec zdz, where C is the unit circle z 1. C Solution: 1 sec zdz cos z dz C C Singular points of the function are got by equating the denominator to zero. SNSCT-DEPT OF MATHEMATICS Page 9 COMPLEX INTEGRATION cos z 0 z (2n 1) ,n 0, 1, 2,... 2 3 , ,.... 2 2 points lie outside z 1. All By Cauchy’s integral theorem f (z)dz 0 C sec zdz 0 C 31. Find the residue of f (z) 50z (z 4)(z 1)2 at z=1. Solution: Z=1 is apole of order 2. Resf (z)z 1 lim (z 4)50 50z z 1 d 50z (z 1)2 . z 1 dz (z 4)(z 1)2 lim (z 4)2 5 * 50 50 52 250 50 200 8 25 25 32. Give the formula to obtain the residue of f(z) that has a pole of order m at z=a. Solution: If z z 0 is a pole f order m,a simple formula to determine the residues is given by 33. Find the dm1 (z z0 )m f (z) 2 z z m1 (m 1) 0 dz singular points of f (z) 1 1 state sin za b1 1 lim their nature. Solution: f(z) has an finite number of poles which are given by 1 n ,n 1, 2,.... za 1 i.e z a n 1 z a n But z=a also is a singular point. It is an essential singularity It is a limit point of the poles So it is a non isolated singularity. SNSCT-DEPT OF MATHEMATICS Page 10 COMPLEX INTEGRATION SNSCT-DEPT OF MATHEMATICS Page 11
© Copyright 2026 Paperzz