Interest Rate Models:
An Introduction
CH3. Discrete-Time Binomial Models
Andrew J. G. Cairns
報告者:張國培
指導教授:戴天時
1
3.1 A Simple No-Arbitrage Model
• P(t,T) : the price at time t of a zero-coupon bond which
matures at time T
• Risk-free rate of interest
r(t+s)= -logP(t,t+1) for 0≤s<1
• Cash account
B(0)=1
B(t+1)=
𝐵(𝑡)
𝑃(𝑡,𝑡+1)
= exp
𝑡+1
𝑟
0
𝑠 𝑑𝑠 = exp[
𝑡
𝑠=0 𝑟(𝑠)]
2
3.1 A Simple No - Arbitrage Model
Is it possibile for us to develop a stochastic model for the dynamics
of these bond prices which is arbitrage free?
It is trivial to demonstrate if interest rates are deterministic.
Define the instantaneous risk - free rate, r(t), to be equal to F( 0 ,T,T 1 ) for T t T 1
ie. r (t ) F( 0 ,T,T 1 ) for T t T 1
T 1
T 1
P(t,T) exp ( r(s) ) exp ( F( 0 ,s,s 1 ) )
s t
s t
T 1
exp ( F( 0 ,s,s 1 ) )
s 0
t 1
exp ( F( 0 ,s,s 1 ) )
s 0
Forward rate F( 0 ,t,T)
1
P( 0 ,t)
ln
T t P( 0 ,T)
proof :
let Z(t, T) is the zero - coupon rate at time t which matures at time T
Z(t,T)
- ln P(t,T)
T t
e Z( 0 ,t)*t e F( 0 ,t,T)*(T t) e Z( 0 ,T)*T
Z( 0 ,T)*T Z( 0 ,t)*t
T t
- ln P( 0 ,T)
- ln P( 0 ,t)
*T
*t
T
t
T t
1
P( 0 ,t)
ln
T t P( 0 ,T)
F( 0 ,t,T)
P( 0 ,T)
- - - - - - - - - - - (*)
P( 0 ,t)
With this structure, the prices of all bonds grow at the risk - free rate,
and the model is arbitrage free.
3
Case1: When P(t,T)<
𝑃(0,𝑡)
units of the
𝑃(0,𝑇)
𝑃(0,𝑡)
獲得 $
𝑃(0, 𝑇)
𝑃(0,𝑇)
sell
𝑃(0,𝑇)
𝑃(0,𝑡)
T − bond
0
Buy 1units of the t-bond
花費 $𝑃(0, 𝑡)
Case2: When P(t,T)>
1
t
units of the T-bond
𝑃(𝑡,𝑇)
1
花費 $
P(t,T)=1
𝑃(𝑡,𝑇)
T
Buy
套利: $
1
𝑃(𝑡,𝑇)
−
𝑃(0,𝑡)
>0
𝑃(0,𝑇)
𝑃(0,𝑇)
𝑃(0,𝑡)
1
units of the T-bond
𝑃(𝑡,𝑇)
1
獲得 $
P(t,T)=1
𝑃(𝑡,𝑇)
Sell
Sell 1units of the t-bond
獲得 $𝑃(0, 𝑡)
0
𝑃(0,𝑡)
Buy
units of the
𝑃(0,𝑇)
𝑃(0,𝑡)
花費 $
𝑃(0, 𝑇)
𝑃(0,𝑇)
T − bond
t
T
套利: $
𝑃(0,𝑡)
1
𝑃(0,𝑇) 𝑃(𝑡,𝑇)
>0
4
3.2 The Ho and Lee No - Arbitrage Model
Suppose that at time 1 either all prices go up or they all go down relative to the risk - free
return on cash : for all T 1,
P(0, T)
is the forward price at time 0 for delivery at time 1 of the zero - coupon bond which
P(0,1)
matures at time T.
P(0, T)
u(0,
T)
if ' up'
P(0,1)
P (1, T )
d(0, T) P(0, T)
if ' down'
P(0,1)
Note that if u(0, s) d(0, s) 1 for all s, then price at time 1 are deterministic.
Repeat this step at all future times.
P(t, T)
u(t,
T
t)
P(t, t 1)
P (t 1, T )
d(t, T - t) P(t, T)
P(t, t 1)
if ' up'
if ' down'
u(t, s) and d(t, s) are known at time t
Assume
(i) u(t, s) ≧ d(t, s) for all t, s
(ii) u(t, s) = u(s) (there is no dependence upon prices or upon t.)
(iii) u(1) = d(1) = 1 (ensure that P(t, t) 1 t)
5
Consider all price changes between ti mes 0 and 1.
Theorem 3.1
(i) Suppose that the model is arbitrage free. Then
u(T)>1>d(T)>0 for all T≧ 2
Proof :
by definition u(T)>d(T) for all T ≧ 2 ,
prices are positive
d(T)>0
so u(T)>d(T)>0
(i ) Consider
u (T ) d (T ) 1
P (1, T ) d (T ) P (0, T ) 1
1
P (0, T )
P (0,1)
P (0, T ) P(0,1)
(ii ) Consider 1 u (T ) d (T )
B (1)
P (1, T )
P(0, T )
P(0,1)
1
P (1, T ) P(0,1) 1
P(1, T )
P(0, T )
P(1, T )
P (0,1)
P (0, T ) P(0,1) P(0, T )
P(0,1)
(i )(ii )皆存在套利機會
u (T ) 1 d (T ) 0
is true
6
(ii) Suppose that the model is arbitrage free .Define
1 d (T )
q (T )
for all T 2.
u (T ) d (T )
Then there exist q.0<q<1, such that q(T)=q for all T≧ 2 .
q defines the equivalent martingale measure Q ; that is , PQ ('up ') q , PQ ('down ') 1 q .
Proof : ( 課本給的是special case,這邊證明我們從廣義的角度來證 )
EQT [ P ( t 1,T )| Ft ] q (T t )
P ( t ,T ) u (T t )
P ( t ,T ) d (T t )
(1 q (T t ))
P ( t ,t 1)
P ( t ,t 1)
P ( t ,T )
[ q (T t ) u (T t ) (1 q (T t )) d (T t )]
P ( t ,t 1)
P ( t ,T )
1 d (T t )
u (T t ) 1
[
u (T t )
d (T t )]
P ( t ,t 1) u (T t ) d (T t )
u (T t ) d (T t )
P ( t ,T )
P ( t ,t 1)
P ( t 1,T )
P ( t ,T )
1
P ( t ,T ) P ( t ,t 1) P ( t ,T )
| Ft ]
B ( t 1)
P ( t ,t 1) B ( t 1) P ( t ,t 1) B ( t )
B (t )
P(t, T)
By Tower property,under Q T measure ,
is a martingale.
B(t)
proof :
0s t
P(t, T)
P(t, T)
E[
| Fs ] E[E[
| Ft ] | Fs ]
B(t)
B(t)
P(t, T)
E [ E [... E [ E[
|Ft -1 ] | Ft -2 ]| ...| Fs1 ]| Fs ]
B(t)
P ( t 1,T )
E [ E [... E [
| Ft -2 ]| ...| Fs1 ]| Fs ]
B ( t 1)
......
P(s,T)
B(s)
EQT [
7
ex :
Replicate P(1,2) by using T - bond and cash
V (0) xB(0) yP(0, T )
V (1) xB(1) yP(1, T )
( we hold x units of cash and y units of P(0, T))
V(1) should be equal to P(1,2) regardless of whether prices go up or down.
xB(1) yu (T ) P (0, T ) B (1) u (2) P (0,2) B (1)
down
xB(1) yd (T ) P (0, T ) B (1) d (2) P (0,2) B (1)
up
(u (2) d (2)) P (0,2)
(u (T )d (2) d (T )u (2)) P (0,2)
P (0,1)
x
u (T ) d (T )
(u (T ) d (T )) P (0, T )
P (0,1)
(u (T )d (2) d (T )u (2)) P (0,2) (u (2) d (2)) P (0,2)
V (0) x yP(0, T ) [
]
u (T ) d (T )
1 d (T )
u (T ) 1
[u (2)
d ( 2)
]P (0,2)
u (T ) d (T )
u (T ) d (T )
arbitrage - free V(0) P(0,2) V(1) P(1,2)
y
1 d (T )
u (T ) 1
d ( 2)
1
u (T ) d (T )
u (T ) d (T )
u( 2 )q(T) d( 2 )( 1-q(T)) 1
u ( 2)
1-d( 2 )
u( 2 )-d( 2 )
q(T) q( 2 ) q for all T
q(T)
that is,
8
(iii) Suppose there exists an equivalent martingale measure, Q;
that is, a q such tht 0 q 1 and EQ [P( 1,T)/B( 1 )] P( 0 ,T)/B( 0 ) for all T.
Then there is no arbitrage between time 0 and 1 in the binomial model.
proof :
N
N
T T 1
Take any portfolio {x }
Then
with net value 0; that is, x T P (0, T ) 0.
T 1
N
N
T 1
T 1
EQ [ x T P (1, T )] x T B (1) EQ [
N
B (1) xT
T 1
P (1, T )
]
B (1)
P (0, T )
B ( 0)
0
N
Hence, if we consider the random variable x T P (1, T ), either both outcome are 0 or
T 1
one outcome is positive and one negative. So no arbitrage is possible between times 0 and 1.
Remark 3.2 The requirement that q(T) q for all T and for some 0 q 1 imposes the relationship
u(T)
[ 1-( 1-q)d(T)]
q
for all T.
u( 2 )q(T) d( 2 )( 1-q(T)) 1
9
3.3 Recombining Binomial Model
As in Section 3.2 we assume that u(t,T,Ft ) u(T) for all t,Ft .(Markov process) Furthermore,
we would like the price to be path independent.
But only depend upon the number of up-steps.
Denintion : P(t, T, i) P(t, T) given that there have been i down-steps and
(t - i) up-steps between 0 and t ( i 0,1,..., t)
𝑃(2, 𝑇, 0)
𝑃(1, 𝑇, 0)
𝑃(2, 𝑇, 1)
𝑃(0, 𝑇, 0)
𝑃(1, 𝑇, 1)
𝑃(2, 𝑇, 2)
10
ex : Consider the two - year period t 0 to t 2. We require that all prices after
the up-down sequence are equal to the price after the down-up sequence
𝑃(2, 𝑇, 0)
for t 1
𝑃(1, 𝑇, 0)
P (0, T ,0)
P (0,1,0)
P (0, T ,0)
P (1, T ,1) d (T )
P (0,1,0)
P (1, T ,0) u (T )
𝑃(2, 𝑇, 1)
𝑃(0, 𝑇, 0)
𝑃(1, 𝑇, 1)
for t 2
P (1, T ,0)
d (T 1)
P (1,2,0)
u (T )( P (0, T ,0)
𝑃(2, 𝑇, 2)
)
P (0,1,0)
up-down
P (1,2,0)
d (T )( P (0, T ,0)
)
P(1, T,1)
P (0,1,0)
u(T - 1)
u (T 1)
down-up
P(1,2,1)
P (1,2,1)
d (T 1)u (T ) u (T 1)d (T )
P (1,2,0)
P (1,2,1)
d(T)
d (T 1)
P (1,2,1) d (2)
k
where k
0 k 1 - - - - - - - - - (**)
u(T)
u (T 1)
P (1,2,0) u (2)
d(T)
since u(1) d(1) 1, so
k T 1
u(T)
( q*u(T)+(1-q)*d(T)=1 )
form Theorem 3.1 and Remark 3.2
P (2, T ,1) d (T 1)
1
u (T )
(1 q )k T 1 q
k T 1
and d (T )
(1 q )k T 1 q
- - - - - - - -(3.1)
11
綜上所述, 只要知道任一期間上漲下跌的值以及P(0, t) t 1,2,3...., T
我們就可代入下列式子將可得到一顆 binomial lattice.
d( 2 )
d (T )
k T 1
u( 2 )
u (T )
1 d( 2 )
q
u( 2 ) d( 2 )
1
u(T)
( 1 q)k T 1 q
k
k T 1
d(T)
( 1 q)k T 1 q
12
Example3.3
Suppose P(0, T) 0.94, 0.9, 0.87, 0.84 for T 1,2,3,4 respectively.
Further, it is known that P(1,2) 0.94 or 0.965. It follows that
P (1,2,0) P (0,1)
1.007889
P (0,2)
P (1,2,1) P (0,1)
d ( 2)
0.981778
P (0,2)
1 d ( 2)
q
0.697872
u ( 2) d ( 2)
d ( 2)
k
0.974093
u ( 2)
By equation 3.1
u ( 2)
T
P(0, T)
u(T) P(0,1)
P (1, T )
d(T) P(0, T)
P(0,1)
if ' up'
if ' down'
(by Theorem 3.1 (ii))
(by (**))
1
2
3
4
u(T)
1.0000
1.007889
1.015694
1.023414
d(T)
1.0000
0.981778
0.963749
0.945917
Then we can then compute values for the P(t, T, x) using
P(t - 1, T, x)
u(T
t
1)
P (t 1, t , x)
P(t, T, x)
d(T - t 1) P(t - 1, T, x - 1)
P (t 1, t , x 1)
x 0,1,...., t - 1
x 1,2,..., t
13
Then we can then compute values for the P(t, T, x) using
P(t - 1, T, x)
u(T - t 1) P (t 1, t , x)
P(t, T, x)
d(T - t 1) P(t - 1, T, x - 1)
P (t 1, t , x 1)
table for P(t,1)
t
x
0
1
0
0.94
1
1
1
x
0
1
2
3
4
0
0.84
x 0,1,...., t - 1
x 1,2,..., t
x
0
1
2
table for P(t,2)
t
0
1
0.9
0.965
0.94
table for P(t,4)
t
1
2
3
0.91454 0.962583 0.988124
0.845287 0.913355 0.962525
0.866644 0.937589
0.913299
2
1
1
1
x
0
1
2
3
table for P(t,3)
t
0
1
2
0.87
0.940057 0.981838
0.891981 0.956401
0.931624
3
1
1
1
1
4
1
1
1
1
1
So, we can observe the lattice structure for P(t,4)、R(t,4)、r(t)
14
Remark 3.4. Under this model for u(T), d(T) let us consider t he forward - rate curve.
F(t , T 1, T) ln
P (t , T 1)
u (T t )
F (0, T 1, T ) ln
D(t ) ln k ,
P (t , T )
u (T )
t
where D(t) I(s) is the number of down - steps and
s 1
1 if there is a down - step at time s
I(s)
0 otherwise
proof : We prove the result by induction. And it is true for t 0.
Suppose it is true for t.
Case1 : Consider t he case I(t 1) 0. Then D(t 1) D(t) and
F (t 1, T 1, T , D(t 1)) ln
ln
P(t 1,T 1,D(t 1 ))
P(t 1,T,D(t 1 ))
u (T t 1) P (t , T 1, D(t ))
u (T t ) P (t , T , D(t ))
P (t , t 1, D (t ))
( D(t 1) D(t))
P (t , t 1, D(t ))
u (T t 1)
P (t , T 1, D (t ))
ln(
) ln
u (T t )
P (t , T , D(t ))
u (T t 1)
ln(
) F(t , T 1, T , D (t ) )
u (T t )
u (T t 1)
u (T t )
ln(
) F (0, T 1, T ) ln
D (t ) ln k
u (T t )
u (T )
u (T t 1)
F (0, T 1, T ) ln
D(t 1) ln k
u (T )
So, the result is true for t 1 if I(t 1) 0
15
Case2 : Consider t he case I(t 1) 1. Then D(t 1) D(t) 1 and
F (t 1, T 1, T , D(t 1)) ln
ln
P(t 1,T 1,D(t 1 ))
P(t 1,T,D(t 1 ))
d (T t 1) P (t , T 1, D(t ))
P(t , t 1, D(t ))
d (T t ) P (t , T , D (t ))
( D(t 1) D(t) 1)
P(t , t 1, D(t ))
d (T t 1)
P (t , T 1, D(t ))
ln
ln
d (T t )
P(t , T , D(t ))
u (T t 1)k T t 2
1
k T-1
F(t
,
T
1
,
T
,
D
(
t
)
)
(
u(T)
and
d(T)
)
u (T t )k T t 1
( 1 q)k T 1 q
( 1 q)k T 1 q
u (T t 1)
u (T t )
ln
ln k F (0, T 1, T ) ln
D(t ) ln k
u (T t )
u (T )
u (T t 1)
F (0, T 1, T ) ln
D(t 1) ln k
u (T )
So, the result is true for t 1 if I(t 1) 1
ln
Hence the result is true for t 1, and the result follows by induction.
16
Corrllary 3.5 The risk - free rate of interest is then
u (1)
D(t ) ln k
u (t 1)
F (0, t , t 1) ln u (t 1) D(t ) ln k
r (t ) F (t , t , t 1) F (0, t , t 1) ln
F (0, t , t 1) ln d (t 1) U (t ) ln k
where U(t) t - D(t) is the number of up - steps up to time t.
We observe that this model for r(t) is a random walk with constant volatility but time - varying drift.
Remark 3.6 It is necessary to put constraints on q and k to ensure that the risk - free rate remains positive
(that is, P(t, t 1) 1) over a specified period of time. However, for any admissible (q, k),
there will exist some t 0 which implies that, for all t t 0 , P (t , t 1, i ) will be greater than 1
for some i, we cannot prevent interest rates from going negative eventually.
(ps. dr(t) θ(t)dt σdw(t) )
17
© Copyright 2026 Paperzz