Grade 8 Mathematics Module 7, Topic A, Lesson 5

Lesson 5
NYS COMMON CORE MATHEMATICS CURRICULUM
8β€’7
Lesson 5: Solving Equations with Radicals
Student Outcomes
ο‚§
Students find the positive solutions to equations algebraically equivalent to equations of the form π‘₯ 2 = 𝑝 and
π‘₯ 3 = 𝑝.
Lesson Notes
As with previous lessons, students are asked to find only the positive value of π‘₯ that makes each equation true.
However, we have included in the examples and exercises both the positive and the negative values of π‘₯ so that the
teacher can choose whether to provide the rationale for both solutions and whether to require students to give them as
part of their answers.
Classwork
Discussion (15 minutes)
ο‚§
Just recently, we began solving equations that required us to find the square root or cube root of a number.
All of those equations were in the form of π‘₯ 2 = 𝑝 or π‘₯ 3 = 𝑝, where 𝑝 was a positive rational number.
Example 1
Example 1
π’™πŸ‘ + πŸ—π’™ =
ο‚§
𝟏
(πŸπŸ–π’™ + πŸ“πŸ’)
𝟐
Now that we know about square roots and cube roots, we can combine that knowledge with our knowledge of
1
2
the properties of equality to begin solving nonlinear equations like π‘₯ 3 + 9π‘₯ = (18π‘₯ + 54). Transform the
MP.1
equation until you can determine the positive value of π‘₯ that makes the equation true.
Challenge students to solve the equation independently or in pairs. Have students share their strategy for solving the
equation. Ask them to explain each step.
οƒΊ
Sample response:
1
(18π‘₯ + 54)
2
π‘₯ 3 + 9π‘₯ = 9π‘₯ + 27
π‘₯ 3 + 9π‘₯ =
π‘₯ 3 + 9π‘₯ βˆ’ 9π‘₯ = 9π‘₯ βˆ’ 9π‘₯ + 27
π‘₯ 3 = 27
Scaffolding:
Consider using a simpler
version of the equation (line 2,
for example):
π‘₯ 3 + 9π‘₯ = 9π‘₯ + 27.
3
√π‘₯ 3 = 3√27
3
π‘₯ = √ 33
π‘₯=3
Lesson 5:
Solving Equations with Radicals
This work is derived from Eureka Math β„’ and licensed by Great Minds. ©2015 Great Minds. eureka-math.org
This file derived from G8-M7-TE-1.3.0-10.2015
62
This work is licensed under a
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.
Lesson 5
NYS COMMON CORE MATHEMATICS CURRICULUM
ο‚§
8β€’7
Now, we verify our solution is correct.
1
33 + 9(3) = (18(3) + 54)
2
1
27 + 27 = (54 + 54)
2
1
54 = (108)
2
54 = 54
ο‚§
Since the left side is the same as the right side, our solution is correct.
Example 2
Example 2
𝒙(𝒙 βˆ’ πŸ‘) βˆ’ πŸ“πŸ = βˆ’πŸ‘π’™ + πŸπŸ‘
ο‚§
Let’s look at another nonlinear equation. Find the positive value of π‘₯ that makes the equation true:
π‘₯(π‘₯ βˆ’ 3) βˆ’ 51 = βˆ’3π‘₯ + 13.
Provide students with time to solve the equation independently or in pairs. Have students share their strategy for
solving the equation. Ask them to explain each step.
οƒΊ
Sample response:
π‘₯(π‘₯ βˆ’ 3) βˆ’ 51 = βˆ’3π‘₯ + 13
π‘₯ 2 βˆ’ 3π‘₯ βˆ’ 51 = βˆ’3π‘₯ + 13
π‘₯ 2 βˆ’ 3π‘₯ + 3π‘₯ βˆ’ 51 = βˆ’3π‘₯ + 3π‘₯ + 13
π‘₯ 2 βˆ’ 51 = 13
π‘₯ 2 βˆ’ 51 + 51 = 13 + 51
π‘₯ 2 = 64
√π‘₯ 2 = ±βˆš64
π‘₯ = ±βˆš64
π‘₯ = ±8
ο‚§
Now we verify our solution is correct.
Provide students time to check their work.
ο‚§
Let π‘₯ = 8.
Let π‘₯ = βˆ’8.
8(8 βˆ’ 3) βˆ’ 51 = βˆ’3(8) + 13
8(5) βˆ’ 51 = βˆ’24 + 13
ο‚§
βˆ’8(βˆ’8 βˆ’ 3) βˆ’ 51 = βˆ’3(βˆ’8) + 13
βˆ’8(βˆ’11) βˆ’ 51 = 24 + 13
40 βˆ’ 51 = βˆ’11
88 βˆ’ 51 = 37
βˆ’11 = βˆ’11
37 = 37
Now it is clear that the left side is exactly the same as the right side, and our solution is correct.
Lesson 5:
Solving Equations with Radicals
This work is derived from Eureka Math β„’ and licensed by Great Minds. ©2015 Great Minds. eureka-math.org
This file derived from G8-M7-TE-1.3.0-10.2015
63
This work is licensed under a
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.
Lesson 5
NYS COMMON CORE MATHEMATICS CURRICULUM
8β€’7
Exercises (20 minutes)
Students complete Exercises 1–7 independently or in pairs. Although we are asking students to find the positive value of
π‘₯ that makes each equation true, we have included in the exercises both the positive and the negative values of π‘₯ so
that the teacher can choose whether to use them.
Exercises
Find the positive value of 𝒙 that makes each equation true, and then verify your solution is correct.
1.
a.
Solve π’™πŸ βˆ’ πŸπŸ’ = πŸ“π’™ + πŸ”πŸ• βˆ’ πŸ“π’™.
π’™πŸ βˆ’ πŸπŸ’ = πŸ“π’™ + πŸ”πŸ• βˆ’ πŸ“π’™
Check:
π’™πŸ βˆ’ πŸπŸ’ = πŸ”πŸ•
πŸ—πŸ βˆ’ πŸπŸ’ = πŸ“(πŸ—) + πŸ”πŸ• βˆ’ πŸ“(πŸ—)
πŸ–πŸ βˆ’ πŸπŸ’ = πŸ’πŸ“ + πŸ”πŸ• βˆ’ πŸ’πŸ“
πŸ”πŸ• = πŸ”πŸ•
π’™πŸ βˆ’ πŸπŸ’ + πŸπŸ’ = πŸ”πŸ• + πŸπŸ’
π’™πŸ = πŸ–πŸ
βˆšπ’™πŸ = ±βˆšπŸ–πŸ
𝒙 = ±βˆšπŸ–πŸ
𝒙 = ±πŸ—
b.
(βˆ’πŸ—)𝟐 βˆ’ πŸπŸ’ = πŸ“(βˆ’πŸ—) + πŸ”πŸ• βˆ’ πŸ“(βˆ’πŸ—)
πŸ–πŸ βˆ’ πŸπŸ’ = βˆ’πŸ’πŸ“ + πŸ”πŸ• + πŸ’πŸ“
πŸ”πŸ• = πŸ”πŸ•
Explain how you solved the equation.
To solve the equation, I had to first use the properties of equality to transform the equation into the form of
π’™πŸ = πŸ–πŸ. Then, I had to take the square root of both sides of the equation to determine that 𝒙 = πŸ— since the
number 𝒙 is being squared.
2.
Solve and simplify: 𝒙(𝒙 βˆ’ 𝟏) = 𝟏𝟐𝟏 βˆ’ 𝒙.
𝒙(𝒙 βˆ’ 𝟏) = 𝟏𝟐𝟏 βˆ’ 𝒙
Check:
π’™πŸ βˆ’ 𝒙 = 𝟏𝟐𝟏 βˆ’ 𝒙
π’™πŸ βˆ’ 𝒙 + 𝒙 = 𝟏𝟐𝟏 βˆ’ 𝒙 + 𝒙
π’™πŸ = 𝟏𝟐𝟏
𝟏𝟏(𝟏𝟏 βˆ’ 𝟏) = 𝟏𝟐𝟏 βˆ’ 𝟏𝟏
𝟏𝟏(𝟏𝟎) = 𝟏𝟏𝟎
𝟏𝟏𝟎 = 𝟏𝟏𝟎
βˆšπ’™πŸ = ±βˆšπŸπŸπŸ
𝒙 = ±βˆšπŸπŸπŸ
𝒙 = ±πŸπŸ
Lesson 5:
Solving Equations with Radicals
This work is derived from Eureka Math β„’ and licensed by Great Minds. ©2015 Great Minds. eureka-math.org
This file derived from G8-M7-TE-1.3.0-10.2015
βˆ’πŸπŸ(βˆ’πŸπŸ βˆ’ 𝟏) = 𝟏𝟐𝟏 βˆ’ (βˆ’πŸπŸ)
βˆ’πŸπŸ(βˆ’πŸπŸ) = 𝟏𝟐𝟏 + 𝟏𝟏
πŸπŸ‘πŸ = πŸπŸ‘πŸ
64
This work is licensed under a
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.
Lesson 5
NYS COMMON CORE MATHEMATICS CURRICULUM
3.
8β€’7
A square has a side length of πŸ‘π’™ inches and an area of πŸ‘πŸπŸ’ 𝐒𝐧𝟐 . What is the value of 𝒙?
(πŸ‘π’™)𝟐 = πŸ‘πŸπŸ’
Check:
πŸ‘πŸ π’™πŸ = πŸ‘πŸπŸ’
(πŸ‘(πŸ”)) 𝟐 = πŸ‘πŸπŸ’
πŸ—π’™πŸ = πŸ‘πŸπŸ’
πŸπŸ–πŸ = πŸ‘πŸπŸ’
πŸ‘πŸπŸ’ = πŸ‘πŸπŸ’
πŸ—π’™πŸ πŸ‘πŸπŸ’
=
πŸ—
πŸ—
𝟐
𝒙 = πŸ‘πŸ”
βˆšπ’™πŸ = βˆšπŸ‘πŸ”
𝒙=πŸ”
A negative number would not make sense as a length, so 𝒙 = πŸ”.
4.
βˆ’πŸ‘π’™πŸ‘ + πŸπŸ’ = βˆ’πŸ”πŸ•
βˆ’πŸ‘π’™πŸ‘ + πŸπŸ’ = βˆ’πŸ”πŸ•
Check:
βˆ’πŸ‘π’™πŸ‘ + πŸπŸ’ βˆ’ πŸπŸ’ = βˆ’πŸ”πŸ• βˆ’ πŸπŸ’
βˆ’πŸ‘(πŸ‘)πŸ‘ + πŸπŸ’ = βˆ’πŸ”πŸ•
πŸ‘
βˆ’πŸ‘π’™ = βˆ’πŸ–πŸ
βˆ’πŸ‘(πŸπŸ•) + πŸπŸ’ = βˆ’πŸ”πŸ•
βˆ’πŸ‘π’™πŸ‘ βˆ’πŸ–πŸ
=
βˆ’πŸ‘
βˆ’πŸ‘
π’™πŸ‘ = πŸπŸ•
βˆ’πŸ–πŸ + πŸπŸ’ = βˆ’πŸ”πŸ•
βˆ’πŸ”πŸ• = βˆ’πŸ”πŸ•
πŸ‘
βˆšπ’™πŸ‘ = πŸ‘βˆšπŸπŸ•
𝒙=πŸ‘
5.
𝒙(𝒙 + πŸ’) βˆ’ πŸ‘ = πŸ’(𝒙 + πŸπŸ—. πŸ“)
𝒙(𝒙 + πŸ’) βˆ’ πŸ‘ = πŸ’(𝒙 + πŸπŸ—. πŸ“)
Check:
π’™πŸ + πŸ’π’™ βˆ’ πŸ‘ = πŸ’π’™ + πŸ•πŸ–
πŸ—(πŸ— + πŸ’) βˆ’ πŸ‘ = πŸ’(πŸ— + πŸπŸ—. πŸ“)
π’™πŸ + πŸ’π’™ βˆ’ πŸ’π’™ βˆ’ πŸ‘ = πŸ’π’™ βˆ’ πŸ’π’™ + πŸ•πŸ–
πŸ—(πŸπŸ‘) βˆ’ πŸ‘ = πŸ’(πŸπŸ–. πŸ“)
π’™πŸ βˆ’ πŸ‘ = πŸ•πŸ–
πŸπŸπŸ• βˆ’ πŸ‘ = πŸπŸπŸ’
π’™πŸ βˆ’ πŸ‘ + πŸ‘ = πŸ•πŸ– + πŸ‘
πŸπŸπŸ’ = πŸπŸπŸ’
π’™πŸ = πŸ–πŸ
βˆšπ’™πŸ = ±βˆšπŸ–πŸ
βˆ’πŸ—(βˆ’πŸ— + πŸ’) βˆ’ πŸ‘ = πŸ’(βˆ’πŸ— + πŸπŸ—. πŸ“)
𝒙 = ±πŸ—
βˆ’πŸ—(βˆ’πŸ“) βˆ’ πŸ‘ = πŸ’(𝟏𝟎. πŸ“)
πŸ’πŸ“ βˆ’ πŸ‘ = πŸ’πŸ
πŸ’πŸ = πŸ’πŸ
6.
πŸπŸπŸ” + 𝒙 = 𝒙(π’™πŸ βˆ’ πŸ“) + πŸ”π’™
πŸπŸπŸ” + 𝒙 = 𝒙(π’™πŸ βˆ’ πŸ“) + πŸ”π’™
Check:
πŸπŸπŸ” + 𝒙 = π’™πŸ‘ βˆ’ πŸ“π’™ + πŸ”π’™
πŸπŸπŸ” + 𝒙 = π’™πŸ‘ + 𝒙
πŸπŸπŸ” + 𝒙 βˆ’ 𝒙 = π’™πŸ‘ + 𝒙 βˆ’ 𝒙
πŸπŸπŸ” = π’™πŸ‘
πŸ‘
πŸπŸπŸ” + πŸ” = πŸ”(πŸ”πŸ βˆ’ πŸ“) + πŸ”(πŸ”)
𝟐𝟐𝟐 = πŸ”(πŸ‘πŸ) + πŸ‘πŸ”
𝟐𝟐𝟐 = πŸπŸ–πŸ” + πŸ‘πŸ”
𝟐𝟐𝟐 = 𝟐𝟐𝟐
πŸ‘
βˆšπŸπŸπŸ” = βˆšπ’™πŸ‘
πŸ”=𝒙
Lesson 5:
Solving Equations with Radicals
This work is derived from Eureka Math β„’ and licensed by Great Minds. ©2015 Great Minds. eureka-math.org
This file derived from G8-M7-TE-1.3.0-10.2015
65
This work is licensed under a
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.
Lesson 5
NYS COMMON CORE MATHEMATICS CURRICULUM
8β€’7
7.
a.
What are we trying to determine in the diagram below?
We need to determine the value of 𝒙 so that its square root, multiplied by πŸ’,
satisfies the equation
𝟐
πŸ“πŸ + (πŸ’βˆšπ’™) = 𝟏𝟏𝟐.
b.
Determine the value of 𝒙, and check your answer.
𝟐
πŸ“πŸ + (πŸ’βˆšπ’™) = 𝟏𝟏𝟐
Check:
𝟐
πŸπŸ“ + πŸ’πŸ (βˆšπ’™) = 𝟏𝟐𝟏
𝟐
πŸπŸ“ βˆ’ πŸπŸ“ + πŸ’πŸ (βˆšπ’™) = 𝟏𝟐𝟏 βˆ’ πŸπŸ“
𝟐
πŸ“πŸ + (πŸ’βˆšπŸ”) = 𝟏𝟏𝟐
πŸπŸ“ + πŸπŸ”(πŸ”) = 𝟏𝟐𝟏
πŸπŸ”π’™ = πŸ—πŸ”
πŸπŸ”π’™ πŸ—πŸ”
=
πŸπŸ”
πŸπŸ”
𝒙=πŸ”
πŸπŸ“ + πŸ—πŸ” = 𝟏𝟐𝟏
𝟏𝟐𝟏 = 𝟏𝟐𝟏
The value of 𝒙 is πŸ”.
Closing (5 minutes)
Summarize, or ask students to summarize, the main points from the lesson:
ο‚§
We know how to solve equations with squared and cubed variables and verify that our solutions are correct.
Lesson 5:
Solving Equations with Radicals
This work is derived from Eureka Math β„’ and licensed by Great Minds. ©2015 Great Minds. eureka-math.org
This file derived from G8-M7-TE-1.3.0-10.2015
66
This work is licensed under a
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.
Lesson 5
NYS COMMON CORE MATHEMATICS CURRICULUM
8β€’7
Lesson Summary
Equations that contain variables that are squared or cubed can be solved using the properties of equality and the
definition of square and cube roots.
Simplify an equation until it is in the form of π’™πŸ = 𝒑 or π’™πŸ‘ = 𝒑, where 𝒑 is a positive rational number; then, take the
square or cube root to determine the positive value of 𝒙.
Example:
Solve for 𝒙.
𝟏
(πŸπ’™πŸ + 𝟏𝟎) = πŸ‘πŸŽ
𝟐
π’™πŸ + πŸ“ = πŸ‘πŸŽ
Check:
π’™πŸ + πŸ“ βˆ’ πŸ“ = πŸ‘πŸŽ βˆ’ πŸ“
π’™πŸ = πŸπŸ“
βˆšπ’™πŸ = βˆšπŸπŸ“
𝒙=πŸ“
𝟏
(𝟐(πŸ“)𝟐 + 𝟏𝟎) = πŸ‘πŸŽ
𝟐
𝟏
(𝟐(πŸπŸ“) + 𝟏𝟎) = πŸ‘πŸŽ
𝟐
𝟏
(πŸ“πŸŽ + 𝟏𝟎) = πŸ‘πŸŽ
𝟐
𝟏
(πŸ”πŸŽ) = πŸ‘πŸŽ
𝟐
πŸ‘πŸŽ = πŸ‘πŸŽ
Exit Ticket (5 minutes)
Lesson 5:
Solving Equations with Radicals
This work is derived from Eureka Math β„’ and licensed by Great Minds. ©2015 Great Minds. eureka-math.org
This file derived from G8-M7-TE-1.3.0-10.2015
67
This work is licensed under a
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.
Lesson 5
NYS COMMON CORE MATHEMATICS CURRICULUM
Name
8β€’7
Date
Lesson 5: Solving Equations with Radicals
Exit Ticket
1.
Find the positive value of π‘₯ that makes the equation true, and then verify your solution is correct.
π‘₯ 2 + 4π‘₯ = 4(π‘₯ + 16)
2.
Find the positive value of π‘₯ that makes the equation true, and then verify your solution is correct.
(4π‘₯)3 = 1728
Lesson 5:
Solving Equations with Radicals
This work is derived from Eureka Math β„’ and licensed by Great Minds. ©2015 Great Minds. eureka-math.org
This file derived from G8-M7-TE-1.3.0-10.2015
68
This work is licensed under a
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.
Lesson 5
NYS COMMON CORE MATHEMATICS CURRICULUM
8β€’7
Exit Ticket Sample Solutions
1.
Find the positive value of 𝒙 that makes the equation true, and then verify your solution is correct.
π’™πŸ + πŸ’π’™ = πŸ’(𝒙 + πŸπŸ”)
π’™πŸ + πŸ’π’™ = πŸ’(𝒙 + πŸπŸ”)
Check:
𝟐
𝒙 + πŸ’π’™ = πŸ’π’™ + πŸ”πŸ’
πŸ–πŸ + πŸ’(πŸ–) = πŸ’(πŸ– + πŸπŸ”)
π’™πŸ + πŸ’π’™ βˆ’ πŸ’π’™ = πŸ’π’™ βˆ’ πŸ’π’™ + πŸ”πŸ’
πŸ”πŸ’ + πŸ‘πŸ = πŸ’(πŸπŸ’)
π’™πŸ = πŸ”πŸ’
πŸ—πŸ” = πŸ—πŸ”
βˆšπ’™πŸ = βˆšπŸ”πŸ’
𝒙=πŸ–
2.
Find the positive value of 𝒙 that makes the equation true, and then verify your solution is correct.
(πŸ’π’™)πŸ‘ = πŸπŸ•πŸπŸ–
(πŸ’π’™)πŸ‘ = πŸπŸ•πŸπŸ–
Check:
πŸ‘
πŸ”πŸ’π’™ = πŸπŸ•πŸπŸ–
𝟏
𝟏
(πŸ”πŸ’π’™πŸ‘ ) = (πŸπŸ•πŸπŸ–)
πŸ”πŸ’
πŸ”πŸ’
π’™πŸ‘ = πŸπŸ•
πŸ‘
√ π’™πŸ‘
πŸ‘
(πŸ’(πŸ‘)) = πŸπŸ•πŸπŸ–
πŸπŸπŸ‘ = πŸπŸ•πŸπŸ–
πŸπŸ•πŸπŸ– = πŸπŸ•πŸπŸ–
πŸ‘
= βˆšπŸπŸ•
𝒙=πŸ‘
Problem Set Sample Solutions
Find the positive value of 𝒙 that makes each equation true, and then verify your solution is correct.
1.
𝟏
𝟐
π’™πŸ (𝒙 + πŸ•) = (πŸπŸ’π’™πŸ + πŸπŸ”)
𝟏
(πŸπŸ’π’™πŸ + πŸπŸ”)
𝟐
π’™πŸ‘ + πŸ•π’™πŸ = πŸ•π’™πŸ + πŸ–
π’™πŸ (𝒙 + πŸ•) =
Check:
π’™πŸ‘ + πŸ•π’™πŸ βˆ’ πŸ•π’™πŸ = πŸ•π’™πŸ βˆ’ πŸ•π’™πŸ + πŸ–
π’™πŸ‘ = πŸ–
πŸ‘
βˆšπ’™πŸ‘ = πŸ‘βˆšπŸ–
𝒙=𝟐
Lesson 5:
Solving Equations with Radicals
This work is derived from Eureka Math β„’ and licensed by Great Minds. ©2015 Great Minds. eureka-math.org
This file derived from G8-M7-TE-1.3.0-10.2015
𝟏
(πŸπŸ’(𝟐𝟐 ) + πŸπŸ”)
𝟐
𝟏
πŸ’(πŸ—) = (πŸ“πŸ” + πŸπŸ”)
𝟐
𝟏
πŸ‘πŸ” = (πŸ•πŸ)
𝟐
πŸ‘πŸ” = πŸ‘πŸ”
𝟐𝟐 (𝟐 + πŸ•) =
69
This work is licensed under a
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.
Lesson 5
NYS COMMON CORE MATHEMATICS CURRICULUM
2.
π’™πŸ‘ = πŸπŸ‘πŸ‘πŸβˆ’πŸ
π’™πŸ‘ = πŸπŸ‘πŸ‘πŸβˆ’πŸ
πŸ‘
√ π’™πŸ‘
=
βˆšπŸπŸ‘πŸ‘πŸβˆ’πŸ
πŸ‘
𝟏
πŸπŸ‘πŸ‘πŸ
πŸ‘
𝟏
πŸπŸπŸ‘
𝒙=√
𝒙=
Check:
πŸ‘
𝒙=√
3.
8β€’7
𝟏 πŸ‘
( ) = πŸπŸ‘πŸ‘πŸβˆ’πŸ
𝟏𝟏
𝟏
= πŸπŸ‘πŸ‘πŸβˆ’πŸ
πŸπŸπŸ‘
𝟏
= πŸπŸ‘πŸ‘πŸβˆ’πŸ
πŸπŸ‘πŸ‘πŸ
πŸπŸ‘πŸ‘πŸβˆ’πŸ = πŸπŸ‘πŸ‘πŸβˆ’πŸ
𝟏
𝟏𝟏
Determine the positive value of 𝒙 that makes the equation true, and then explain how you solved the equation.
π’™πŸ—
π’™πŸ•
βˆ’ πŸ’πŸ— = 𝟎
π’™πŸ—
βˆ’ πŸ’πŸ— = 𝟎
π’™πŸ•
π’™πŸ βˆ’ πŸ’πŸ— = 𝟎
Check:
πŸ•πŸ βˆ’ πŸ’πŸ— = 𝟎
πŸ’πŸ— βˆ’ πŸ’πŸ— = 𝟎
π’™πŸ βˆ’ πŸ’πŸ— + πŸ’πŸ— = 𝟎 + πŸ’πŸ—
𝟎=𝟎
π’™πŸ = πŸ’πŸ—
βˆšπ’™πŸ = βˆšπŸ’πŸ—
𝒙=πŸ•
To solve the equation, I first had to simplify the expression
π’™πŸ—
π’™πŸ•
to π’™πŸ . Next, I used the properties of equality to
transform the equation into π’™πŸ = πŸ’πŸ—. Finally, I had to take the square root of both sides of the equation to solve for
𝒙.
4.
Determine the positive value of 𝒙 that makes the equation true.
(πŸ–π’™)𝟐 = 𝟏
(πŸ–π’™)𝟐 = 𝟏
Check:
πŸ”πŸ’π’™πŸ = 𝟏
βˆšπŸ”πŸ’π’™πŸ = √𝟏
πŸ–π’™ = 𝟏
πŸ–π’™ 𝟏
=
πŸ–
πŸ–
𝟏
𝒙=
πŸ–
Lesson 5:
Solving Equations with Radicals
This work is derived from Eureka Math β„’ and licensed by Great Minds. ©2015 Great Minds. eureka-math.org
This file derived from G8-M7-TE-1.3.0-10.2015
𝟐
𝟏
(πŸ– ( )) = 𝟏
πŸ–
𝟏𝟐 = 𝟏
𝟏=𝟏
70
This work is licensed under a
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.
Lesson 5
NYS COMMON CORE MATHEMATICS CURRICULUM
5.
𝟐
(πŸ—βˆšπ’™) βˆ’ πŸ’πŸ‘π’™ = πŸ•πŸ”
𝟐
(πŸ—βˆšπ’™) βˆ’ πŸ’πŸ‘π’™ = πŸ•πŸ”
Check:
𝟐
𝟐
πŸ—πŸ (βˆšπ’™) βˆ’ πŸ’πŸ‘π’™ = πŸ•πŸ”
(πŸ—(√𝟐)) βˆ’ πŸ’πŸ‘(𝟐) = πŸ•πŸ”
πŸ–πŸπ’™ βˆ’ πŸ’πŸ‘π’™ = πŸ•πŸ”
𝟐
πŸ—πŸ (√𝟐) βˆ’ πŸ–πŸ” = πŸ•πŸ”
πŸ‘πŸ–π’™ = πŸ•πŸ”
πŸ‘πŸ–π’™ πŸ•πŸ”
=
πŸ‘πŸ–
πŸ‘πŸ–
𝒙=𝟐
6.
8β€’7
πŸ–πŸ(𝟐) βˆ’ πŸ–πŸ” = πŸ•πŸ”
πŸπŸ”πŸ βˆ’ πŸ–πŸ” = πŸ•πŸ”
πŸ•πŸ” = πŸ•πŸ”
Determine the length of the hypotenuse of the right triangle below.
πŸ‘πŸ + πŸ•πŸ = π’™πŸ
Check:
πŸ— + πŸ’πŸ— = π’™πŸ
πŸ“πŸ– = 𝒙
𝟐
βˆšπŸ“πŸ– = βˆšπ’™πŸ
𝟐
πŸ‘πŸ + πŸ•πŸ = βˆšπŸ“πŸ–
πŸ— + πŸ’πŸ— = πŸ“πŸ–
πŸ“πŸ– = πŸ“πŸ–
βˆšπŸ“πŸ– = 𝒙
Since 𝒙 = βˆšπŸ“πŸ– , the length of the hypotenuse is βˆšπŸ“πŸ– 𝐦𝐦.
Lesson 5:
Solving Equations with Radicals
This work is derived from Eureka Math β„’ and licensed by Great Minds. ©2015 Great Minds. eureka-math.org
This file derived from G8-M7-TE-1.3.0-10.2015
71
This work is licensed under a
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.
Lesson 5
NYS COMMON CORE MATHEMATICS CURRICULUM
7.
8β€’7
Determine the length of the legs in the right triangle below.
𝟐
Check:
π’™πŸ + π’™πŸ = (πŸπŸ’βˆšπŸ)
𝟐
𝟐
πŸπ’™πŸ = πŸπŸ’πŸ (√𝟐)
πŸπŸ’πŸ + πŸπŸ’πŸ = (πŸπŸ’βˆšπŸ)
πŸπ’™πŸ = πŸπŸ—πŸ”(𝟐)
πŸπŸ—πŸ” + πŸπŸ—πŸ” = πŸπŸ’πŸ (√𝟐)
𝟐
𝟐
πŸπ’™
πŸπŸ—πŸ”(𝟐)
=
𝟐
𝟐
π’™πŸ = πŸπŸ—πŸ”
πŸ‘πŸ—πŸ = πŸπŸ—πŸ”(𝟐)
πŸ‘πŸ—πŸ = πŸ‘πŸ—πŸ
βˆšπ’™πŸ = βˆšπŸπŸ—πŸ”
𝒙 = βˆšπŸπŸ’πŸ
𝒙 = πŸπŸ’
Since 𝒙 = πŸπŸ’, the length of each of the legs of the right triangle is πŸπŸ’ 𝐜𝐦.
8.
An equilateral triangle has side lengths of πŸ” 𝐜𝐦. What is the height of the triangle? What is the area of the
triangle?
Note: This problem has two solutions, one with a simplified root and one without. Choose the appropriate solution
for your classes based on how much simplifying you have taught them.
Let 𝒉 𝐜𝐦 represent the height of the triangle.
πŸ‘πŸ + π’‰πŸ = πŸ”πŸ
πŸ— + π’‰πŸ = πŸ‘πŸ”
πŸ— βˆ’ πŸ— + π’‰πŸ = πŸ‘πŸ” βˆ’ πŸ—
π’‰πŸ = πŸπŸ•
βˆšπ’‰πŸ = βˆšπŸπŸ•
𝒉 = βˆšπŸπŸ•
𝒉 = βˆšπŸ‘πŸ‘
𝒉 = βˆšπŸ‘πŸ × βˆšπŸ‘
𝒉 = πŸ‘βˆšπŸ‘
Let 𝑨 represent the area of the triangle.
𝑨=
πŸ”(πŸ‘βˆšπŸ‘)
𝟐
𝑨 = πŸ‘(πŸ‘βˆšπŸ‘)
𝑨 = πŸ—βˆšπŸ‘
Simplified: The height of the triangle is πŸ‘βˆšπŸ‘ 𝐜𝐦, and the area is πŸ—βˆšπŸ‘ 𝐜𝐦𝟐 .
Unsimplified: The height of the triangle is βˆšπŸπŸ• 𝐜𝐦, and the area is πŸ‘βˆšπŸπŸ• 𝐜𝐦𝟐.
Lesson 5:
Solving Equations with Radicals
This work is derived from Eureka Math β„’ and licensed by Great Minds. ©2015 Great Minds. eureka-math.org
This file derived from G8-M7-TE-1.3.0-10.2015
72
This work is licensed under a
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.
Lesson 5
NYS COMMON CORE MATHEMATICS CURRICULUM
9.
8β€’7
Challenge: Find the positive value of 𝒙 that makes the equation true.
𝟏
𝟐
𝟐
( 𝒙) βˆ’ πŸ‘π’™ = πŸ•π’™ + πŸ– βˆ’ πŸπŸŽπ’™
𝟏 𝟐
( 𝒙) βˆ’ πŸ‘π’™ = πŸ•π’™ + πŸ– βˆ’ πŸπŸŽπ’™
𝟐
𝟏 𝟐
𝒙 βˆ’ πŸ‘π’™ = βˆ’πŸ‘π’™ + πŸ–
πŸ’
Check:
𝟐
𝟏
( (πŸ’βˆšπŸ)) βˆ’ πŸ‘(πŸ’βˆšπŸ) = πŸ•(πŸ’βˆšπŸ) + πŸ– βˆ’ 𝟏𝟎(πŸ’βˆšπŸ)
𝟐
𝟏
(πŸπŸ”)(𝟐) βˆ’ πŸ‘(πŸ’βˆšπŸ) = πŸ•(πŸ’βˆšπŸ) βˆ’ 𝟏𝟎(πŸ’βˆšπŸ) + πŸ–
πŸ’
πŸ‘πŸ
βˆ’ πŸ‘(πŸ’βˆšπŸ) = πŸ•(πŸ’βˆšπŸ) βˆ’ 𝟏𝟎(πŸ’βˆšπŸ) + πŸ–
πŸ’
πŸ– βˆ’ πŸ‘(πŸ’βˆšπŸ) = (πŸ• βˆ’ 𝟏𝟎)(πŸ’βˆšπŸ) + πŸ–
𝟏 𝟐
𝒙 βˆ’ πŸ‘π’™ + πŸ‘π’™ = βˆ’πŸ‘π’™ + πŸ‘π’™ + πŸ–
πŸ’
𝟏 𝟐
𝒙 =πŸ–
πŸ’
𝟏 𝟐
πŸ’ ( ) 𝒙 = πŸ–(πŸ’)
πŸ’
π’™πŸ = πŸ‘πŸ
πŸ– βˆ’ πŸ‘(πŸ’βˆšπŸ) = βˆ’πŸ‘(πŸ’βˆšπŸ) + πŸ–
πŸ– βˆ’ πŸ– βˆ’ πŸ‘(πŸ’βˆšπŸ) = βˆ’πŸ‘(πŸ’βˆšπŸ) + πŸ– βˆ’ πŸ–
βˆšπ’™πŸ = βˆšπŸ‘πŸ
βˆ’πŸ‘(πŸ’βˆšπŸ) = βˆ’πŸ‘(πŸ’βˆšπŸ)
𝒙 = βˆšπŸπŸ“
𝒙 = √𝟐𝟐 β‹… √𝟐𝟐 β‹… √𝟐
𝒙 = πŸ’βˆšπŸ
10. Challenge: Find the positive value of 𝒙 that makes the equation true.
πŸπŸπ’™ + 𝒙(𝒙 βˆ’ πŸ’) = πŸ•(𝒙 + πŸ—)
πŸπŸπ’™ + 𝒙(𝒙 βˆ’ πŸ’) = πŸ•(𝒙 + πŸ—)
Check:
πŸπŸπ’™ + π’™πŸ βˆ’ πŸ’π’™ = πŸ•π’™ + πŸ”πŸ‘
πŸ•π’™ + π’™πŸ = πŸ•π’™ + πŸ”πŸ‘
πŸ•π’™ βˆ’ πŸ•π’™ + π’™πŸ = πŸ•π’™ βˆ’ πŸ•π’™ + πŸ”πŸ‘
𝟏𝟏(πŸ‘βˆšπŸ•) + πŸ‘βˆšπŸ•(πŸ‘βˆšπŸ• βˆ’ πŸ’) = πŸ•(πŸ‘βˆšπŸ• + πŸ—)
𝟐
πŸ‘πŸ‘βˆšπŸ• + πŸ‘πŸ (βˆšπŸ•) βˆ’ πŸ’(πŸ‘βˆšπŸ•) = πŸπŸβˆšπŸ• + πŸ”πŸ‘
π’™πŸ = πŸ”πŸ‘
βˆšπ’™πŸ = βˆšπŸ”πŸ‘
𝒙 = √(πŸ‘πŸ )(πŸ•)
𝒙 = βˆšπŸ‘πŸ β‹… βˆšπŸ•
𝒙 = πŸ‘βˆšπŸ•
πŸ‘πŸ‘βˆšπŸ• βˆ’ πŸ’(πŸ‘βˆšπŸ•) + πŸ—(πŸ•) = πŸπŸβˆšπŸ• + πŸ”πŸ‘
πŸ‘πŸ‘βˆšπŸ• βˆ’ πŸπŸβˆšπŸ• + πŸ”πŸ‘ = πŸπŸβˆšπŸ• + πŸ”πŸ‘
(πŸ‘πŸ‘ βˆ’ 𝟏𝟐)βˆšπŸ• + πŸ”πŸ‘ = πŸπŸβˆšπŸ• + πŸ”πŸ‘
πŸπŸβˆšπŸ• + πŸ”πŸ‘ = πŸπŸβˆšπŸ• + πŸ”πŸ‘
πŸπŸβˆšπŸ• + πŸ”πŸ‘ βˆ’ πŸ”πŸ‘ = πŸπŸβˆšπŸ• + πŸ”πŸ‘ βˆ’ πŸ”πŸ‘
πŸπŸβˆšπŸ• = πŸπŸβˆšπŸ•
Lesson 5:
Solving Equations with Radicals
This work is derived from Eureka Math β„’ and licensed by Great Minds. ©2015 Great Minds. eureka-math.org
This file derived from G8-M7-TE-1.3.0-10.2015
73
This work is licensed under a
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.