1.1.1 John von Neumann, Zur Theorie der Gesellschaftsspiele, Mathematische Annalen
1
ƷᄂᆮᲵǼȭԧᲬʴDzȸȠƴ᧙ƢǔȜȬȫƷᄂᆮᲦƓǑƼȕȬȃǷǧƱȕǩȳȷȎǤȞȳ
ȟȋȞȃǯǹྸܭᲢ1928Უ
ᲵฆӳဦᲵȢȫDzȳǷȥȆȫȳƷฆӳဦ (1928)ᲵȄǧȫ
ȡȭƷ( ྸܭ1913)ᲵWaldgrave (1713) ƷฆӳဦƱȟȋȞȃǯǹҾྸᲵSteinhaus(1925)
1.1 von Neumann ƷȟȋȞȃǯǹྸܭƱƜǕǛƱǓLJƘᛅ᫆
ƨࢨ᪪ƴƭƍƯᲦ࢘ƷᅹܖႎˊᏑƱƷ᧙ᡲƴသॖƠƯᜒ፯ƢǔᲨ
von Neumann-Morgenstern ƷᓸƀDzȸȠྸᛯƱኺฎᘍѣƁ(1944) ƷЈ༿ЭࢸǛɶ࣎
ƱƠƨDzȸȠྸᛯƷ᱁ଢƔǒᲦJ.F.Nash ƷྸᛯLJưƷႆޒƱᲦƦǕƕኺฎܖƴӏDžƠ
1 ƸơNJƴ
ኺฎܖӪ II
DzȸȠྸᛯƷᛓဃ
Ʒᛯʗ (1953)
100, 295-320. ᒍᚪᲴin Tucker, A.W. and R.D.Luce, ed., Contributions to the Theory
of Games IV, Annals of Mathematics Studies 40, 1959.
1.1.2 E. Zermelo, Uber eine Anwendung der Mengenlehre auf die Theorie des Schachspiels,
Proceedings of the Fifth International Congress of Mathematicians 2, 501-4.
1.1.3 E.Borel, Sur les Jeux o interviennent l’hasard et l’habilit des joueurs, Elements de la
theorie des probabilites, J.Hermann, ed. 1924, 204-24.
1.1.4 Hugo Steinhaus, Definitions for a Theory of Games and Pursuit, Mysl Akademicka
1, 1925, 13–14.
1.2 von Neumann-Morgenstern ƷᓸƱ᧙ᡲƢǔᛅ᫆
ᅈ˟ᅹܖƷƨNJƷૠܖᲵңщDzȸȠƱܭܤᨼӳᲵࠀКᚐᲵྸܭנ܍Ჵπྸႎ૾ඥ
1.2.1 John von Neumann and O.Morgenstern, Theory of Games and Economic Behavior,
Princeton University Press, 1944.
2
1.3 von Neumann ƷרᘖȢȇȫᲦኺฎܖƓǑƼᐯࠁف഻ೞ
ɧሁࡸСኖƱኺฎȢȇȫᲵȕǩȳȷȎǤȞȳƷȬȳȞᲢᲫᲳᲭᲱᲣƱᚌƷɧѣໜྸܭ
1.5 Nash Ʒʩฏբ᫆ƱȊȃǷȥȷȗȭǰȩȠ
1.5.1 John F.Nash, Jr. The Bargaining Problem, Econometrica 18, 1950, 155-62.
1.5.2 John Nash, Two-Person Cooperative Games, Econometrica 21, 1953, 128-40.
ᲢᲫᲳᲮᲫᲣ
1.3.1 John von Neumann, Über ein ekonomisches Gleichungssystem und eine Verallge-
meinerung des Brouwerschen Fixpunktszatzes, Ergebnisse eines Mathematik Kolloquiums 8, 1937, 73-83.
1.6
ӳྸࣱᲦ᬴ܱƓǑƼᨂܭƞǕƨӳྸࣱ
1.6.1 J.Robinson, An Iterative Method of Solving a Game, Annals of Mathematics 54,
1951 296-301.
1.6.2 M.O.Rabin, Effective Computability of Winning Strategies, Contribution to the The-
1.4 Nash Ʒ᩼ңщDzȸȠƱɧѣໜྸܭ
᩼ңщDzȸȠƱȊȃǷȥרᘖᲵϙƱྸܭנ܍ᲵᚐƱᡶ҄DzȸȠ
ory of Games, M.D.Dresher et al eds., Annals of Mathematics Studies 39, 1957, 147157.
1.4.1 John F.Nash, Jr., Equilibrium Points in N-Person Games, Proceedings of the Na-
tional Academy of Sciences 36, 1950, 48-9.
1.4.2 John Nash, Non-Cooperative Games, Annals of Mathematics 54(2) September 1951,
286-95.
3
Ӌᎋ૨ྂ
[1] R.J.Aumann, Game Theory, The New Palgrave: Game Theory, J.Eatwell, M.Milgate
and P.Newman eds., The Macmillan Press, 1987.
[2] H.W.Kuhn and S.Nasar (eds.), The Essential John Nash, Princeton University Press,
2002.
4
[3] ᤠஙήဏᲦDzȸȠྸᛯƷޒᲦிʮᲦ1973.
[4] Y.Varoufakis (ed.), Game Theory, Critical Concepts in the Social Sciences Vol.1 Foundations, Routledge, 2001.
[5] R.Weintraub(ed), Toward a History of Game Theory, Duke Univerity Press, 1992.
ǴȳǻǹᲦ1933 ųƋǔƴᔺƷႸƷɶưᲦᐯЎᐯ៲Ǜਫ਼᠍ƠƯƍƳƍႸƢ
ǂƯƷႸǛƭƘǔƜƱƴƳƬƨᲨƠƔƠᲦƦƷႸᐯ៲ƸƦǕƴਫ਼᠍ƢǂƖƩǖ
ƏƔᲹ
ȴǡȳȷȀȳȄǣ
ųƢǂƯƷࠊƷࠊᧈƴƭƍƯᲦƦƷࠊƴ˰LJƳƍࠊᧈƸƢǂƯᲦཎ
КࠊƱƍƏࠊƴ˰ǜưƍǔƱƢǔᲨƜƷཎКࠊƷࠊᧈƸƲƜƴ˰ǜưƍǔƔᲹᲢཎ
КࠊƩƱƢǔƱཎКࠊƴƸ˰ǜưƍƳƍƸƣưƋǓᲦཎКࠊˌٳƩƱƢǔƱཎКࠊ
2 ȑȩȉȃǯǹ
A. ǫȳȈȫƷȑȩȉȃǯǹᲴų M ǛƢǂƯƷᨼӳƷᨼӳᲦP(M) ǛƦƷǂƖᨼӳƱƢǔ
ƱƖᲦP(M) Ƹ M ƷᙲእưƋǔƱӷƴ M ǛᙲእƱƠƯԃljᲨǑǓദᄩƴᚕƏƱᲦǂƖ
ᨼӳ P(M) ƷຜࡇƸᨼӳ M ƷຜࡇǑǓٻƖƘᲦӷƴᲦP(M) Ƹ M ƷᢿЎᨼӳưNjƋǔ
ƔǒᲦP(M) ƷຜࡇƸᨼӳ M ƷຜࡇˌɦưƋǔᲨᲢᲫᲲᲳᲱ࠰ᲱஉᲬᲲଐ˄ᲦȇȇǭȳȈǁƷኡᲣ
B. ȩȃǻȫƷȑȩȉȃǯǹᲴU := {M|M M} ƱƢǔƱᲦU ∈ U ưƸƳƘᲦU U ưNj
ƴ˰ǜưƍǔƜƱƴƳǔᲣ
Შ
C. ȪǷȣȸȫƷȑȩȉȃǯǹᲴųžᲫᲱ૨ˌ܌ϋưܭ፯ưƖƳƍஇݱƷૠſƸᲫᲱ૨܌
ưܭ፯ƞǕƯƍǔᲨ
ᲢᲫᲳᲪᲯ࠰ᲰஉᲣ
ƜǕƸșȪȸƴǑƬƯᲫᲳᲪᲰ࠰ƴǘƔǓǍƢƘᚕƍ੭ƑǒǕƨȪǷȣȸȫƷȑȩ
ȉȃǯǹưƋǔᲨƳƓᲦƜƷȪǷȣȸȫƷȑȩȉȃǯǹǍžᅶƸƏƦƭƖưƢſƱƍƏ
žƏƦƭƖƷȑȩȉȃǯǹſ
ᲢᲽᲰɭኔᲦǯȬǿʴǨȔȡȋȇǹᲣƕᲦࢸ࠰ᲦஊӸƳDzȸ
ƳƍᲨ
ᲢᲫᲳᲪᲬ࠰ᲰஉᲫᲰଐᲦȕȬȸDzǁƷኡᲣ
ƜƷȩȃǻȫƷȑȩȉȃǯǹƸᲦᨼӳˌٳƷಒࣞǛဇƍƯƓǒƣᲦᨼӳƷಒࣞƦƷNj
ƷƷɧܦμƞǛᇢႎƴƋǒǘƢჳႽƱƠƯஊӸᲨLJƨᲦˌɦƷǑƏƳȐȸǸȧȳNjƋǔᲨ
ȩȃǻȫᲦૠྸՋܖλᧉᲦ1919 ųƋǔƷދƸᲦᐯЎưƻƛǛЧǒƳƍʴƷƻƛ
ƷLjǛЧǔᲨưƸᲦƦƷދƸᐯЎƷƻƛǛЧǔƷƩǖƏƔᲨ
ȇȫ [3] ƷɧܦμࣱྸܭᲦƞǒƴȁȣǤȆǣȳ [2] ǍdzȫȢǴȭȕ [5] ƷȩȳȀȠࣱƴႆ
ޒƠƨᲨ
ȑǺȫ ᲴƓLJƑƕദႺᎍƳǒ༃ƯƏƧᲨƏƦƭƖƳǒƍƯƏƧᲨƞƋᲦƲƪǒƩ
Ʊ᭸ƴբǘǕƯᲦƋƳƨƸ˴ƱሉƑǔƩǖƏƔᲹ
5
ɧѣໜྸܭưӸ᭗ƍᲦȖȩǦȯȸᲢᲫᲲᲬᲭᲧᲫᲲᲳᲫᲣƷžɶࢷſᲢưƋǔƔLJ
3 ૠܖƷүೞ
ƨƸưƳƍᲣƸஊᨂƷئӳƷLjദƠƍᲦƱƍƏᇌئᲨƢǂƯƷΨƕǛឱƠƳƍƱ
ƍƘƭNjƷȑȩȉȃǯǹƷЈྵƴǑǓᲦƜǕǒǛΰƠƯᲦᨼӳᛯƷᲦƻƍƯƸૠܖ
ƷүೞǛƏƨNJƷѐщƕƳƞǕƨᲨƦǕǒƴƸᲦٻƖƘЎƚƯᲦᛯྸɼ፯ᲦႺᚇɼ፯
ˎܭƠƯჳႽƕࢽǒǕƨƱƠƯNjᲦǛƨƢΨƕƋǔƱƍƏƜƱƴƸƳǒƳƍᲨ
ƠƔƠᲦƋLJǓƴNjૠܖƷݣᝋǛᨂܭƢǔᇌئƳƷưɼ්ƴƸƳǓƑƳƔƬƨƕᲦʻ
ଐưNjƦƷᙲࣱƸڂǘǕƯƍƳƍᲢᚘምᛯᲦConstructive Mathematics ƳƲᲣᲨ
ƓǑƼ࢟ࡸɼ፯ƕƋǔᲨ
Šᛯྸɼ፯
6
ȩȃǻȫȷțȯǤȈȘȃȉƷƀȗȪȳǭȔǢȷȞȆȞȆǣǫƁƴˊᘙƞǕǔᇌ
Š࢟ࡸɼ፯
ȒȫșȫȈƸᲦૠܖǛπྸኒƱਖ਼ᛯᙹЩƴᢩΨƠᲦƜƷ࢟ࡸႎ˳ኒƷჳႽࣱᲦ
ئᲨᛯྸܖƴǑƬƯᲦᐯૠᛯᲦܱૠᛯᲦᚐௌ࠹˴ܖƳƲǛನሰᲨȩȠǼǤ̖ưஊӸƳ
ƭLJǓᲦԡ᫆ƱƦƷԁܭƕӷƴྸܭƱƳǔƜƱƸƳƍᲦƱƍƏᚰଢǛܦƢǔƜƱ
ȩȠǼǤᲢᲫᲳᲪᲭᲧᲫᲳᲭᲪᲣNjƜƷ්ǕǛƘljᲨ
ƴǑƬƯᲦȑȩȉȃǯǹƔǒᐯဌưƠƔNjႺᚇɼ፯ưƸ્ూƤƟǔǛࢽƳƍٶƘƷӞχ
ƠƔƠᲦӕǓৢƍƕƖǘNJƯ༁ᩃƴƳǔᲨ
ႎૠܖǛNjԃljμૠܖƷͤμࣱǛ̬ᚰƠǑƏƱƍƏᚘဒǛਖ਼ᡶƠƨᲨ
࢟ࡸႎ˳ኒƷჳႽࣱƷᚰଢƱƸᲦ࢟ࡸႎ˳ኒᲢƭLJǓૠܖᲣƦƷNjƷǛݣᝋƱƢǔ
ŠႺᚇɼ፯
ǫȳȈȫƷᨼӳᛯƴݣƢǔஇNjນƠƍЙᎍƸᲦƔƭƯƷࠖưƋƬƨǯȭȍȃ
ǫȸưƋǔᲨžᐯૠƸᅕƕоƬƨᲨƦƷ˂ƷૠƸʴ᧓ƕ˺ƬƨƴƢƗƳƍſžπᲢȑǤᲣ
ƷឬឭࣱƳƲƲǜƳᙲࣱƕƋǔƱƍƏƷƩᲨƦǜƳૠƸנ܍ƠƳƍƱƍƏƷƴſᲨ
ƢǂƯƷૠܖႎݣᝋǛᐯૠƴᢩΨƢǔƜƱᲷምᘐ҄ᲦƸƠƔƠᲦƖǘNJƯᙲᲢDzȸ
ȇȫƷɧܦμࣱྸܭƷᚰଢᲦᚘምᛯᲦdzȳȔȥȸǿȷǵǤǨȳǹᲣ
Შ
7
ૼƠƍЎưƋǔᲨƜƷॖԛưƜǕƸឬૠܖᲢmeta-mathematicsᲣLJƨƸᚰଢᛯᲢproof
theoryᲣƱƍǘǕǔᲨ
ȚǢȎƷᐯૠᛯᲦȒȫșȫȈƴǑǔȦȸǯȪȃȉ࠹˴ܖƷπྸኒᲦ᳔᳀ᲢȄǧȫȡ
ȭȷȕȩȳDZȫᲣᨼӳᛯᲦ᳁ᲢșȫȊǤǹȷDzȸȇȫᲣᨼӳᛯƳƲƕ࢟ࡸ҄ƞǕƨπྸ
ኒƷ̊ưƋǔᲨLJƨᲦȕǩȳȷȎǤȞȳƷƀ܇щܖƷૠܖႎؕᄽƁ[7, 1927] ƸᲦȒȫ
șȫȈȷȗȭǰȩȠƴࢼƏ܇щܖƷžπྸ҄ſǛႸਦƠƨNjƷƱLjǔƜƱƕưƖǔᲨ
8
4 DzȸȇȫƷɧܦμࣱྸܭƱȒȫșȫȈƷᙸௐƯƵٹ
ŠDzȸȇȫƷɧܦμࣱྸܭ
ǦǤȸȳưᲦȒȫșȫȈƨƪƷˁʙǛදॖขƘᙸܣƬƯƍƨDzȸȇ
ȫᲢᲫᲳᲪᲰᲧᲫᲳᲱᲲᲣƸᲦᲫᲳᲭᲫ࠰ᲦഏƷʙܱǛᚰଢƠƨᲨLJƣᲦπྸ҄ƞǕƨ
ƠƯྸᚐƢǔƜƱƕưƖǔᲨ
DzȸȠྸᛯᛓဃЭࢸƷૠܖӪႎᏑƷእ੨ǛኳƑǔЭƴᲦDzȸȇȫƷɧܦμࣱˌྸܭ
ࢸƴࢽǒǕƨྸࣱƷᨂမǛƋǒǘƢ˩ƷኽௐǛʚƭƋƛƯƓƜƏᲨ
ჳႽƳምᘐƷྸᛯƴƸᲦᚰଢNjƦƷԁܭƷᚰଢNjɧӧᏡƳᛯྸࡸƕנ܍ƢǔƜƱᲢᇹᲫ
ɧܦμࣱྸܭᲣᲵƞǒƴᲦჳႽƳྸᛯƷɶưƸƦƷྸᛯᐯ៲ƕჳႽưƋǔƜƱƸᚰଢ
ưƖƳƍƜƱᲢᇹᲬɧܦμࣱྸܭᲣưƋǔᲨ*1 Შ
ƜƏƠƯᲦȒȫșȫȈȷȗȭǰȩȠƸኳǛᡇƑǔƕᲦƜǕƸNjƪǖǜૠܖᐯ˳Ʒኳ
ŠȁȥȸȪȳǰೞƷͣഥբ᫆ Turing [11, 1936]
˓ॖƴɨƑǒǕƨȗȭǰȩȠᲢȁȥȸȪȳǰೞᲣ
ƕ˓ॖƷλщƴݣƠƯͣഥƢǔᲢᚘምǛኳʕƠƯኽௐǛЈщƢǔᲣƔԁƔƸൿܭɧᏡư
ƋǔᲨ
ǛॖԛƢǔNjƷưƸƳƍᲨƱƘƴᲦȕǩȳȷȎǤȞȳƸƜǕˌࢸᲦᄩྙႎᛯྸǍᐯࠁ
ف഻ೞᲢࢸƴႆᙸƞǕƨᲾƷᐯࠁᙐᙌƷҾྸᲣᲦᚘምೞƳƲǛԃljφ˳ႎբ᫆Ʒ
ᄂᆮǛᡫƠƯᲦኺ᬴ႎเඡƔǒᢒƘƳƍƱƜǖưƷૠܖႎоᡯࣱƷࢫлǛᙸЈƢǑƏƴ
ƳǔᲨɧܦμࣱྸܭƷЈྵˌЭƷᲦDzȸȠྸᛯƷᛓဃǛԓƛǔᛯ૨ƀᅈ˟ႎDzȸȠƷྸ
*2 ƸᲦ
ᛯƁ
ƀ܇щܖƷૠܖႎؕᄽƁ
Ტ1927ᲣƕཋྸܖƴƓƚǔ᠗ƔƠƍžπྸ҄ſƷᚾLj
ưƋƬƨƷƱӷಮᲦʴ᧓Ʒᅈ˟ႎᘍѣƷžπྸ҄ſƷᚾLjưƋƬƨƕᲦɧܦμࣱˌྸܭ
ࢸƷƀDzȸȠƷྸᛯƱኺฎᘍѣƁ*3 ƸᲦƜƷ૾ӼƴඝƬƨᅈ˟ᅹܖƷƀૠ҄ܖƁƷᚾLjƱ
ŠȩȳȀȠૠƷ נ܍Chaitin [2, 1966]
ᲬᡶޒƷӲƷ͌ƕᲦרឋƳdzǤȳǛ৲ƛƯᘙƳǒᲫᲦᘻ
ƳǒᲪƱൿܭƠƯࢽǒǕǔЗƱғКƕƭƔƳƍǑƏƳܱૠƕנ܍ƢǔᲨ
ƜƷྸܭƸƞǒƴᲦƋǔᆔƷ૾ᆉࡸᲢਦૠႎȇǣǪȕǡȳȈǹ૾ᆉࡸᲣƷᚐƷ̾ૠƕ
ஊᨂ̾ưƋǔƔᨂ̾ưƋǔƔǛൿܭƢǔƷƸᲦdzǤȳǛ৲ƛƯൿܭƢǔƷƱӷơưƋ
ǔƱƍƏʙܱᲢChaitin [2]ᲣǛݰƖᲦLJƨᲦDzȸȠྸᛯƷኵLjưƸᲦȊȃǷȥרᘖƷ̾
ૠƕஊᨂƔᨂƔƸᲦμƘӷơॖԛƴƓƍƯȩȳȀȠưƋǔǑƏƳDzȸȠƕנ܍ƢǔᲦ
*1
ദᄩƳϋܾƴƭƍƯƸ Boolos and Jeffrey [1] ƳƲӋༀƷƜƱ
*2
von Neumann [8, 1928]
Neumann and Morgenstern [9, 1944]
*3
ƱƍƏʙܱƴᘍƖბƘNjƷưƋǔƜƱƕଢǒƔƴƳƬƯƍǔᲢPrasad [10]ᲣᲨᛇኬƸɶޛ
[6] ƷИሁႎᚐᛟǛӋༀᲨ
9
Ӌᎋ૨ྂ
[1] Boolos,G. and R.Jeffrey, Computability and Logic Cambridge University Press, Cambridge (1974).
[2] Chaitin, G.J., On the Length of Programs for Computing Finite Binary Sequences,
J.ACM 13 547 (1966)
[3] Gödel,K. Über Formal Unentscheidbare Sätze der Principia Mathematica und Verwandter System I, Monatschefte Math. Phys. 38 173–98 (1931)
[4] ࠼ແųͤᲦ್ဋɟദᲦDzȸȇȫƷɭမᲦෙᯚᅈᲦᲫᲳᲲᲱ࠰Შ
[5] Kolmogorov, A.N., Three Approaches to the Quantitative Definition of Information,
Prob.Info.Transmission 1, no.1, 1 (1965)
[6] ɶپ࠴ޛᲦȊȃǷȥרᘖƷȩȳȀȠࣱƴƭƍƯƷᙾᲦɤဋ˟ܖᩃᛏᲳᲭࠇᲫӭᲦ
259–266ᲦᲬᲪᲪᲪ࠰.
[7] von Neumann, John, Mathematische Begrundung der Quantenmechanik. Nachrichten
von der Gesellschaft der Wissenschaften Su Göttingen 1 (1927).
[8] von Neumann, John, Zur Theorie der Gesellschahtsspiele, Mathematische Annalen 100
295–320 (1928)
[9] von Neumann, John and Oskar Morgenstern, Theory of Games and Economic Behavior,
11
10
Princeton University Press, (1944)
[10] Prasad, K., Computability and Randomness of Nash Equilibrium in Infinite Games,
Journal of Mathematical Economics 20 429–442, (1991).
[11] Turing.A.M.,On Computable Numbers, with an Application to the Entscheidungsproblem, Proc. Lond. Math. Soc. 42 230–65; 43 544–6 (1936).
12
© Copyright 2026 Paperzz