Efficient Representation of Interconnection Length Distributions Using Generating Polynomials D. Stroobandt (Ghent University) H. Van Marck (Flanders Language Valley) Supported by an IUAP research program on optical computing of the Belgian Government and the Fund for Scientific Research, Flanders April 8, 2000 SLIP 2000 --1-- Outline • Enumerating interconnection length distributions • Advantages of generating polynomials • Construction of generating polynomials • Extraction of the distributions • Examples • Conclusions April 8, 2000 SLIP 2000 --2-- Enumerating Interconnection Length Distributions • Distributions contain two parts: site density function and probability distribution all possibilities requires enumeration April 8, 2000 probability of occurrence shorter wires more probable SLIP 2000 --3-- Enumerating Interconnection Length Distributions (cont.) • Simple Manhattan grids: not so difficult – just start counting – more clever: use convolution • But what with...? – anisotropic grids – partial grids April 8, 2000 SLIP 2000 --4-- Generating Polynomials • Site function (discrete distribution f(l)) describes, for each length l, the number of pairs between all cells of a set A and a set B, a distance l apart (enumeration problem) • Two ways of reducing calculation effort: – using generating polynomials – using symmetry in the topology of the architecture • Generating polynomial: moment-generating polynomial function of f(l) (Z-transform) lmax V ( x) f (l ) x l l 0 April 8, 2000 SLIP 2000 --5-- Advantages of Generating Polynomials • Efficient representation – allows easy switching to path-based enumeration V ( x) x l ( p ) l(p)=8 p – compact representation as rational function n – example A=B n 1 n 1 V ( x) x i j i 0 j 0 V ( x) 2x n 1 p nx 2 x n ( x 1) 2 April 8, 2000 2 n f (l ) 2(n l ) 0 SLIP 2000 --6-- (l 0) (0 l n ) otherwise Advantages (cont.) • Easy to find relevant properties – total number of paths n lmax f (l ) V (1) A=B l 0 – average length (also higher order moments) l max lf (l ) l 0 l max dV ( x) 1 dx V ( x) x 1 f (l ) l 0 • Easy construction of complex polynomials April 8, 2000 SLIP 2000 --7-- Construction of Polynomials • Composition (adding and subtracting polynomials) n A n A B B ||| B 2n A n 1 n X B April 8, 2000 n __ || A SLIP 2000 1 x n 2 xi i 1 --8-- Construction of Polynomials (cont.) • Convolution (multiplication of polynomials) – composing paths from “base” paths n A B n n * || n A C x( x 1) x 1 i x x 2 ( x 1) x 1 i 0 n n 2 n 1 n C D April 8, 2000 n n * SLIP 2000 2 n D B --9-- Extraction of Distributions • Construction of polynomials much easier than construction of distributions but… how to extract distributions from polynomials? • Much simpler than general Z-transform • Theorem n i n l 1 l O( x i 1 ) xn x i ( x 1) l 0 i 1 ( x 1)i • Quotient term important, remainder vanishes n l 1 1 i 1 (n l j ) i 1 (i 1)! j 1 • Note: summation bound to be chosen between n-1 and n-i+1 without effect on result April 8, 2000 SLIP 2000 --10-- Extraction of Distributions (cont.) n i n l 1 l O( x i 1 ) xn x i ( x 1) l 0 i 1 ( x 1)i • Simple substitution of terms by summation of combinatorial functions (with few factors) V ( x) k j 0 ajx bj b j i b j l 1 l V ( x) a j x i 1 j 0 l 0 k ( x 1) i b j l 1 f (l ) a j j 0 i 1 0l b j i k • The different ranges of the distribution naturally follow from this! April 8, 2000 SLIP 2000 --11-- Examples • Manhattan grid n – convolution of x, y parts 2 0 n x – subtract – divide by 2 A=B 2 x 2 n 2 2nx n3 4 x n 2 2nx n1 O( x3 ) V ( x) ( x 1) 4 – extraction = substituting 2 n 2 l 1 n 3 l 1 f (l ) 2 2n 4 1 4 1 0l 2 n 2 2 0 l n 3 3 n 2 l 1 n 1 l 1 4 2n 4 1 4 1 0l n 2 2 0l n 11 April 8, 2000 SLIP 2000 A=B l ( 6 n 63nl l 1) ( 2 n l 1)( 2 nl )( 2 n l 1) f (l ) 3 0 2 2 --12-- (0 l n) ( n l 2n) otherwise Examples (cont.) • Complicated architectures k C B k B n n || A April 8, 2000 2 X SLIP 2000 --13-- Examples (cont.) C E B n n C || C k k + n F April 8, 2000 SLIP 2000 --14-- Examples (cont.) C k E || n n k C + n * n x k k * * F n April 8, 2000 SLIP 2000 --15-- Examples (cont.) C k E n + || C n k * x k+1 1 F April 8, 2000 SLIP 2000 --16-- Examples (cont.) • Resulting generating polynomial: ( x n 1) 2 x k 2n1 n2 n 1 n V ( x) 2 ( x nx 4 x nx 3 x) 4 ( x 1) • Extraction by simple substitution and calculation of the combinatorial functions: 0 (l k 2)(l k 1)(l k ) 2 3 (n k l 1)3n(n k l 1) 5(n k l )( n k l 2) (l k 2)(l k 1)(l k ) f (l ) 2(3n k l 1)n(3n k l 1) (3n k l )(3n k l 2) 13 (4n k l )( 4n k l 1)( 4n k l 2) 1 (4n k l )( 4n k l 1)( 4n k l 2) 3 0 April 8, 2000 SLIP 2000 (0 l k 1) (k l n k 1) (n k l 2n k 1) (2n k l 3n k 1) (3n k l 4n k 1) otherwise --17-- Conclusions • Generating polynomials make enumeration easier – more efficient representation (1 equation, not 5) – easy to obtain characteristic parameters – construction facilitated by using symmetry (composition, convolution easy with polynomials) – extraction by substitutions of terms, can be automated by symbolic calculator tools! • Same technique can be used for calculating cell-to-I/O-pad lengths • Enumeration viable for complex architectures April 8, 2000 SLIP 2000 --18--
© Copyright 2026 Paperzz