MAT 152 – 001 Name:____KEY____________ Exam 2 Grade:___110_______ 1) Find the indicated partial derivatives for the functions below: a) f ( x, y) 8x3 6 x 2 y 6 xy 2 7 y 2 2 y 1 f x 24 x 2 12 xy 6 y 2 f y 6 x2 12 xy 14 y 2 f xy 12 x 12 y b) g ( x, y ) ln x 4 x 2 y 2 y 4 gx 4 x3 2 xy 2 x4 x2 y 2 y 4 gy 2 x2 y 4 y3 x4 x2 y 2 y 4 g xx 12 x 2 2 y 2 x 4 x 2 y 2 y 4 4 x 3 2 xy 2 x 4 x2 y 2 y 4 2 2 2) Find all points where f ( x, y) 3x 2 7 y 3 42 xy 5 has any relative extrema. Identify any saddle points. f x 6 x 42 y 0 f y 21 y 2 42 x 0 y ( y 14) 0 y 0 or y 14 (0, 0) and (98,14) D ( x, y ) 6(42 y ) 42 2 D (0, 0) 0 D (98,14) 0 So, (0,0) is a saddle point, and (98,14) is a relative minimum. 3) A company finds that the total cost to manufacture two products (x and y) is given by C ( x, y) 2 x 2 6 y 2 4 xy 10 . What amount of each product should be made to minimize the cost if a total of 10 must be produced (i.e. subject to x y 10 ). F ( x, y, ) 2 x 2 6 y 2 4 xy 10 ( x y 10) Fx 4 x 4 y 0 Fy 12 y 4 x 0 F x y 10 0 Solving these gives x 10, y 0 4) Consider the graph z x ln xy . a) Find the total differential (dz). dz (ln xy 1)dx x dy y b) If x = 2, y = 3, dx = 0.1 and dy = 0.2, evaluate dz. dz (ln 6 1)(0.1) 2 0.2 0.4125 3 5) Evaluate 2 3 x 1 0 x 3 1 4 1 0 x y y dxdy 1 4 x y xy dy x 0 2 3 2 3 2 93 ydy 4 1 93 y 2 4 2 279 8 2 y 1 93 4 1 8 3 y y dxdy 6) Find the volume under the curve z xy x 2 y 2 and over the rectangular region given by 0 x 4, 0 y 1 . 1 4 2 2 2 xy x y dxdy 0 0 0 0 x y xdx 1 4 1 4 1 x 2 y 2 2 xdx ydy 2 0 0 x4 1 3 1 2 2 x y 2 2 ydy 20 3 x 0 1 3 1 2 3 1 1 y 2 16 ydy ( y 2 ) 2 ydy 30 30 1 3 1 2 1 1 2 1 y 16 2 ydy y 4 dy 302 30 5 12 2 y 16 2 65 y 1 y 0 11 5 y 35 y 1 y 0 1 5 1 5 1 17 2 16 2 15 15 15 289 205 17 15 3 7) Evaluate dydx x R where R is the region given by 1 x 2, 0 y x 1. 2 x 1 dydx R x 1 0 1 dydx x 1 x 1 2 x 1 0 2 1 x 1 dy dx y y 0 dx x 1 x 1 dx x 2 1 x ln x 1 1 ln 2 2 8) Find the general solution to dy x 2 1 dx y (you may express answers as powers of y). 2 ydy x 1 dx y 2 x3 xC 2 3 2 y 2 x3 2 x C 3 9) Consider the differential equation dy x x 2 2 , x > 0. dx a) Find the general solution. dy 2 x dx x dy 2 dx dx x x dx 1 y x 2 2 ln x C 2 b) Find the particular solution if y 8 1 2 (1 ) 2 ln1 C 9 2 8 1 7 C 9 2 18 So, y 1 2 7 x 2 ln x 2 18 8 when x 1. 9 10) Consider the differential equation dy x2 xy x3 2 x 2 , x 0 . dx a) Find the Integrating Factor for the equation. dy 1 y x2 dx x So, 1 I ( x) e x e ln x x dx b) Find the general solution of this differential equation. 1 3 2 x x 2 dx C 3 x x C 1 2 C y x x x x 3 x BONUS (10 pts) Design a cylinder (by finding the appropriate height h and radius r) so that the volume of the cylinder is 4 and the surface area is a minimum. F (r , h, ) 2 r 2 2 rh ( r 2 h 4 ) Fr 4 r 2 h 2 rh 0 Fh 2 r r 2 0 F r 2 h 4 0 Solving , r32 h 23 2
© Copyright 2026 Paperzz