1 NBE-E4120 Cellular Electrophysiology Lecture 4 2 Small perturbations of Vm: Linearity of Vm vs. current • Crab axon immersed in oil • Delay in voltage compared to current • Charging of the membrane • At small currents behaviour linear • Current injection does not affect membrane impedance 3 Electrical Properties of Excitable Membranes Equivalent circuit representation Biological membranes electrical components and circuits Membrane specific capacitance Cm 1 F/cm2 Membrane specific resistance Rm, [Rm] = ·m2 Rm (Vm, t, [neurotransmitters] etc.) Membrane specific conductance Gm = 1/Rm, [Gm] = S·m-2 4 Membrane current density (total) J (A/cm2): J J i JC Vm Er dV dV C m Gm Vm E r C m m Rm dt dt ionic capacitive resting potential of the cell For each ion species: J i gi (Vm Ei ) specific membrane conductance refers to ion species i specific conductance for ion species i E.g. for Na+: J Na g Na (Vm E Na ) For the whole membrane: Vrev Er (Er = resting potential) But for currents carried by single ions: Vrev Ei 5 Ionic conductances Conductance gi (for each ion type) Driving force (Vm – Ei ) J i gi (V Ei ) J i gi (Vm E i ) No concentration dependence? 6 Ionic conductances Conductance gi (for each ion type) Driving force (Vm – Ei ) J i gi (Vm E i ), RT c o Ei ln i zi F c Concentration dependence of ionic currents comes from Nernst potential 7 Ionic conductances Conductance gi (for each ion type) Driving force (Vm – Ei ) J i gi (Vm Ei ), RT c o Ei ln i zi F c For passive individual ionic currents: 1. When Vm Ei , J i f (Vm , E i , t ) 0 2. When Vm E i , J i f (Vm , E i , t ) 0 Only one equilibrium potential for each ion holds also when several types of passive conductances present 8 The parallel conductance model For K+, Na+ and Cl-: J Cm dVm g K (VM E K ) g Na (Vm E Na ) gCl (Vm ECl ) dt Steady-state: V g K E K g Na E Na gCl ECl g K g Na gCl 9 Current-voltage relations Most common way to analyze membrane conductances Usually non-linear Current proportional to the number of ion channels open linear range non-linear range 10 Isopotential cell (spherical) Assumptions: The cell is isopotential and ohmic (Rm constant, Rm Rm(V)) Resting membrane potential Vrest = 0 Current injection into a cell: Current: I m Cm dVm Vm dt Rm Step current response: Vm I m Rm 1 e t / m m Rm C m Input resistance: Rinput Vm () I0 For a spherical cell (radius a): Injected current Rinput I m Rm I m 4 a 2 Rm 4 a 2 11 Non-isopotential cell (cylindrical) Axons, sections of dendrites Propagating current has to flow in the resistive cytoplasm and all along load the cell membrane to a new membrane potential 12 CABLE THEORY: Cells are not generally isopotential: current flow in cylindrical geometries (cells) can be described by cable theory Isopotentiality can be achieved by recording geometry, in which case cable theory is not needed Examples of isopotential recording geometries: Voltage-clamp of the squid giant axon: Sucrose gap -method: 13 Complex geometries (e.g. dendritic trees) can be approached mathematically Role of cable theory in electrophysiology: stimulation of cells quantitative determination of electrical properties of long cells extracellular recordings origins of extracellular signals (EEG, EKG, ERG, EMG) clinical recordings The cable theory is a general theory for a ”core conductor” with certain properties. No neurophysiological or -anatomical knowledge is necessary for the derivation of the theory. 14 Key assumptions of 1-dimensional cable theory: 1. The cable (axon) is a linear, infinitely long tube. 2. The membrane parameters (ri , ro ja cm) are linear and do not depend on membrane potential. 3. The current flow is along the distance of the cable. Then V = V(x,t). 4. The resistance of the extracellular conductor ro is zero (in the textbook the effect of ro is included). For unit length of a cylinder: ri,o axial resistances [ri,o] = /m rm membrane resistance [rm] = ·m cm membrane capasitance [cm] = F/m ii axial current [ii] = A im membrane current [im] = A/m 15 Axial voltage drop generates an axial current (Ohm’s law): Vm ii ri x When x 0 Vm ( x , t ) ii ri x The value of the axial current can change only if the membrane current is im 0: ii im x When x 0 ii im x 2Vm ii Vm By differentiation of Vm/x: ( ) ( i r ) r ( ) ri im i i i 2 x x x x x 16 Membrane current: im iionic ic Vm V cm m rm t Combining with the differential equation: Vm Vm 1 2Vm c m 2 ri x t rm Cable equation (linear) With parameters that are not geometry specific (cyl. radius a): Ri a 2ri Vm Vm a 2Vm R 2 ar C m m m 2 2 Ri x t Rm C c / 2 a m m For a length x, axial resistance = ri x and membrane resistance = rm /x These are equal when ri x rm / x x rm / ri space constant, length constant 2 2 Vm x 2 m Vm Vm t m rm cm time constant 17 L-transformation of the cable equation: Normalization of variables X x/ T t /m Cable equation: Vm L-transformation: L( f (t )) F ( s ) e st f (t )dt 0 Vm Vm 0 2 T X 2Vm 2Vm L 2 2 X X L Vm sVm V (0, x ) T 2 L1 ( F ( s )) f (t ) L( f '(t )) e st 0 e st f (t ) 0 s e st f (t )dt 0, 0 L Vm Vm sL( f (t )) f (0) 2Vm ( s 1)Vm 0 2 X General solution: d f (t ) dt dt Note: No more partial differential equation Vm Ae X s 1 Be X s 1 , A and B from boundary conditions Now Vm Vm ( X , s), by inverse transformation Vm Vm ( X ,T ) 18 Solutions of cable equations Infinite cable, response to constant internal current: Easy experimentally Solution: Vm Ae X s 1 Be X s 1 Conditions: 1. Vm 0, when X 2. Injection of constant current I0 at X = 0, when T 0 1.) B 0 Vm Ae X 1 Vm 1 Vm 2.) ii ri x ri X by derivation ii s 1 Ltransformation A s 1e X ri s 1 ii 1 Vm ri X 19 A from the boundary condition ii I 0 / 2 at X 0 ii ( X 0) I0 2s ( L(1) 1 / s ) A i s 1e X i ri At X 0 : A s 1 0 e ri s 1 I0 2s ri I 0 2s s 1 r I V m i 0 e X s 1 2s s 1 r I X X Vm i 0 e X erfc T e X erfc T 4 2 T 2 T A Electrotonic distance in the cable : X = x/ Electrotonic length of the cable : L = l/ A cable is long, when its electrotonic length 2 s 1 20 Error-function and complementary error-function 2 e x Properties: erf ( x ) 2 x e y2 dy 0 d 2 x2 erf ( x ) e dx erf (0) 0, erf () 1 erf symmetrinen: erf x erf x erfc ( x ) 1 erf ( x ) 1 2 2 e x 2 y e dy 0 y2 dy x erfc () 0, erfc (0) 1, erfc () 2 21 General solution of a biological ”cable problem” Typical number of pages in a textbook 2 partial differential equations describing the system 1 transformation into dimensioless form 1 Internal regularities of the system equations 1 L-transformation and general solution 200 special solutions with different initial and boundary conditions model 1. 2. 3. 4. 5. 22 Infinite cable, current injection, steady-state solution: Vm ri I 0 X X X X e erfc T e erfc T 4 2 T 2 T Kun T , erfc T 0 ja erfc T 2 In cells with large diameter ~ mm; usually in m range rI vm ( x , ) i 0 e 2 x Input resistance: V ( x 0, t ) RN m I0 ri (infinite cable) 2 r r mi Semi-infinite cable: RN 2 RN 2 Rm Ri / 2 Rm Ri / 2 1 Rm Ri RN 2 3 3 2 2 a a a2 2 a 2 Input resistance measured at the point of current injection 23 Infinite cable, internal current step, time behaviour: ri I 0 X X X X e erfc T e erfc T 4 2 T 2 T At X 0 : Vm ri I 0 erfc T erfc T 4 r I i 0 1 erf T 1 erf T 4 r I i 0 erf T 2 Vm Charging of membrane capacitance slower at longer distances erf symmetrinen: erf x erf x Spherical cell Sphrical cell or cable with an axial electrode 24 Elsewhere:
© Copyright 2026 Paperzz