A Non-local Cost Aggregation Method for Stereo Matching Qingxiong Yang City University of Hong Kong 2012 IEEE Conference on Computer Vision and Pattern Recognition 1 Outilne • Introduction • Related Works • Method • Experimental Results • Conclusion 2 Introduction _________________________ 3 Introduction • Goal : Get fast and accurate disparity map. • Solution : Non-local cost aggregation + MST • Advantage : Better in low textures region Low complexity 4 Related Works _________________________ 5 Related Works 1 2 3 4 • Matching cost computation • Cost (support) aggregation • Disparity computation and optimization • Disparity refinement [21] D. Scharstein and R. Szeliski. A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. International Journal of Computer Vision (IJCV), 47:7–42, 2002. 6 Related Works Local methods • 1=>2=>3 • A local support region with winner take all • Implicit smoothness • Fast but inaccurate. Global methods • 1(=>2)=>3 • Energy minimization process (GC,BP,DP,Cooperative) • Per-processing • Explicit smoothness • Accurate but slow 7 Comparison (Rank in Middleburry) Real time Non-Real 1 - 2 O - Method - (no Seg.) Cross-based Aggregation>>Scanline Optimization 3 O Mean-shift >> BP>>Self-adapting 4 O Mean-shift >> Cooperative Optimization - - O Mean-shift>>Color-weighted>>BP 5 - 6 7 O (no Seg.) Seed Detection>>Scanline Propagation 8 O Mean-shift>>BP 9 O Mean-shift(Region-based)>>B-spline 10 O Up-sample>>Bilateral Filter>>BP - - 12 O (No Seg.)>>Convex Relaxation>>regularization 13 O Mean-shift>>Image Warping>>BP 11 - Reference(1/2) C. Shi, G. Wang, X. Pei, H. Bei, and X. Lin. High-accuracy stereo matching based on adaptive ground control points. Submitted to IEEE TIP 2012 X. Mei, X. Sun, M. Zhou, S. Jiao, H. Wang, and X. Zhang. On building an accurate stereo matching system on graphics hardware. GPUCV 2011. A. Klaus, M. Sormann and K. Karner. Segment-based stereo matching using belief propagation and a self-adapting dissimilarity measure. ICPR 2006. Z. Wang and Z. Zheng. A region based stereo matching algorithm using cooperative optimization. CVPR 2008. Anonymous. A dense stereo matching with reliability aggregation and propagation. CVPR 2012 submission 1170. Q. Yang, L. Wang, R. Yang, H. Stewénius, and D. Nistér. Stereo matching with color-weighted correlation, hierarchical belief propagation and occlusion handling. IEEE TPAMI 2009 9 Reference(2/2) X. Sun, X. Mei, S. Jiao, M. Zhou, and H. Wang. Stereo matching with reliable disparity propagation. 3DIMPVT 2011. L. Xu and J. Jia. Stereo matching: an outlier confidence approach. ECCV 2008. M. Bleyer, C. Rother, and P. Kohli. Surface stereo with soft segmentation. CVPR 2010. Q. Yang, R. Yang, J. Davis, and D. Nistér. Spatial-depth super resolution for range images. CVPR 2007. Y. Mizukami, K. Okada, A. Nomura, S. Nakanishi, and K. Tadamura. Sub-pixel disparity search for binocular stereo vision. ICPR 2012 submission 1439. S. Zhu, L. Zhang, and H. Jin. A locally linear regression model for boundary preserving regularization in stereo matching. ECCV 2012. M. Bleyer, M. Gelautz, C. Rother, and C. Rhemann. A stereo approach that handles the matting problem via image warping. CVPR 2009. 10 Method _________________________ 11 Method 1 • Matching cost computation - Bilateral Filter 2 • Cost aggregation - MST 3 4 • Disparity computation and optimization • Disparity refinement - Median Filter 12 Bilateral Filter • Every sample is replaced by a weighted average of its neighbors. • These weights reflect two forces • How close are the neighbor and the center sample • How similar are the neighbor and the center sample • Edge-preserving and noise reducing smoothing filter 13 Bilateral Filter q p 14 Bilateral Filter Center Sample : p Neighborhood : q 15 Bilateral Filter Total Distance 16 Bilateral Filter Original image Gaussian wieght Bilateral wieght 17 Minimum Spanning Tree • Kruskal's Algorithm • Scan all edges increasing weight order, if an edge is safe, add it to F. 4 B C 4 A 2 4 E 1 F 2 D 1 3 10 Orginal Graph 5 G 5 6 3 4 I 18 H 2 J 3 PPT By Jonathan Davis 4 B 4 A E 1 3 10 A 1 D B 4 C B 4 D B 10 J C 2 E C 1 F D 5 H D 6 J E 2 G F 3 G F 5 I G 3 I G 4 J H 2 I 3 5 G 5 B 1 F 2 D 4 C 2 4 A 6 3 4 I H 2 J 3 J 19 J Sort Edges (in reality they are placed in a priority queue - not sorted - but sorting them makes the algorithm easier to visualize) 4 B 4 A E 1 3 10 C 1 F C 2 E E 2 G H 2 J F 3 G G 3 I I 3 J A 4 B B 4 D B 4 C G 4 J F 5 I D 5 H D 6 B 10 5 G 5 D 1 F 2 D 1 C 2 4 A 6 3 4 I H 2 J 3 J 20 J Add Edge 4 B 4 A E 1 3 10 C 1 F C 2 E E 2 G H 2 J F 3 G G 3 I I 3 J A 4 B B 4 D B 4 C G 4 J F 5 I D 5 H D 6 B 10 5 G 5 D 1 F 2 D 1 C 2 4 A 6 3 4 I H 2 J 3 J 21 J Add Edge 4 B 4 A E 1 3 10 C 1 F C 2 E E 2 G H 2 J F 3 G G 3 I I 3 J A 4 B B 4 D B 4 C G 4 J F 5 I D 5 H D 6 B 10 5 G 5 D 1 F 2 D 1 C 2 4 A 6 3 4 I H 2 J 3 J 22 J Add Edge 4 B 4 A E 1 3 10 C 1 F C 2 E E 2 G H 2 J F 3 G G 3 I I 3 J A 4 B B 4 D B 4 C G 4 J F 5 I D 5 H D 6 B 10 5 G 5 D 1 F 2 D 1 C 2 4 A 6 3 4 I H 2 J 3 J 23 J Add Edge 4 B 4 A E 1 3 10 C 1 F C 2 E E 2 G H 2 J F 3 G G 3 I I 3 J A 4 B B 4 D B 4 C G 4 J F 5 I D 5 H D 6 B 10 5 G 5 D 1 F 2 D 1 C 2 4 A 6 3 4 I H 2 J 3 J 24 J Add Edge 4 B 4 A E 1 3 10 C 1 F C 2 E E 2 G H 2 J F 3 G G 3 I I 3 J A 4 B B 4 D B 4 C G 4 J F 5 I D 5 H D 6 B 10 5 G 5 D 1 F 2 D 1 C 2 4 A 6 3 4 I H 2 J 3 J 25 J Cycle Don’t Add Edge 4 B 4 A E 1 3 10 C 1 F C 2 E E 2 G H 2 J F 3 G G 3 I I 3 J A 4 B B 4 D B 4 C G 4 J F 5 I D 5 H D 6 B 10 5 G 5 D 1 F 2 D 1 C 2 4 A 6 3 4 I H 2 J 3 J 26 J Add Edge 4 B 4 A E 1 3 10 C 1 F C 2 E E 2 G H 2 J F 3 G G 3 I I 3 J A 4 B B 4 D B 4 C G 4 J F 5 I D 5 H D 6 B 10 5 G 5 D 1 F 2 D 1 C 2 4 A 6 3 4 I H 2 J 3 J 27 J Add Edge 4 B 4 A E 1 3 10 C 1 F C 2 E E 2 G H 2 J F 3 G G 3 I I 3 J A 4 B B 4 D B 4 C G 4 J F 5 I D 5 H D 6 B 10 5 G 5 D 1 F 2 D 1 C 2 4 A 6 3 4 I H 2 J 3 J 28 J Add Edge 4 B 4 A E 1 3 10 C 1 F C 2 E E 2 G H 2 J F 3 G G 3 I I 3 J A 4 B B 4 D B 4 C G 4 J F 5 I D 5 H D 6 B 10 5 G 5 D 1 F 2 D 1 C 2 4 A 6 3 4 I H 2 J 3 J 29 J Cycle Don’t Add Edge 4 B 4 A E 1 3 10 C 1 F C 2 E E 2 G H 2 J F 3 G G 3 I I 3 J A 4 B B 4 D B 4 C G 4 J F 5 I D 5 H D 6 B 10 5 G 5 D 1 F 2 D 1 C 2 4 A 6 3 4 I H 2 J 3 J 30 J Add Edge 4 B 4 A E 1 C 1 F C 2 E E 2 G H 2 J F 3 G G 3 I I 3 J A 4 B B 4 D B 4 C G 4 J F 5 I D 5 H D 6 J B 10 J 1 3 10 5 G 5 D F 2 D 1 C 2 4 A 6 3 4 I H 2 J 3 31 Minimum Spanning Tree 4 B 4 C 2 A E 1 Orginal Graph 4 1 F 4 B A 2 4 E 1 2 D C F 2 D 1 3 10 G 5 G 3 5 6 3 4 I I H 2 J 3 H 2 J 3 32 Cost Computation • Cd(p) : matching cost for pixel p at disparity level d • : aggregated cost -- σS and σR : constants used to adjust the similarity. 33 Cost Aggregation on a Tree Structure • Weight between p and q • w(p, q) = | I(p)-I(q)| = image gradient • Distance between p and q • D(p, q) = sum of weights of the connected edges • Similarity between p and q • • Aggregated cost • => 34 Cost Aggregation on a MST • Claim 1. Let Tr denote a subtree of a node s and r denote the root node of Tr, then the supports node s received from this subtree is the summation of the supports node s received from r and S(s, r) times the supports node r received from its subtrees. • Supports r = 𝒗 𝑺(𝒓, 𝒗)𝑪𝒅 𝒗 • Supports s = 𝑺 𝒔, 𝒓 𝑪𝒅 𝒓 = 𝒗 𝑺(𝒔, 𝒗)𝑪𝒅 𝒗 = 𝒗 𝑺(𝒔, 𝒓)𝑺(𝒔, 𝒗)𝑪𝒅 𝒗 = 𝑺(𝒔, 𝒓) 𝒗 𝑺(𝒔, 𝒗)𝑪𝒅 𝒗 s r 35 Tr Cost Aggregation on a MST • Aggregated cost => • , if node v is a leaf node • P(vc) denote parent of nodevc 36 Cost Aggregation on a MST 37 Cost Aggregation on a MST • Aggregated cost => 38 Cost Aggregation on a MST • Cost aggregation process • Aggregate the original matching cost Cd from leaf nodes towards root node using Eqn. (6) • Aggregate from root node towards leaf nodes using Eqn. (7) • Complexity • Each level:2 addition/subtraction + 3 multiplication 39 Disparity Refinement • • D:the left disparity map • Unstable:occlusion, lack of texture, specularity • Median filter overlap 40 Experimental Results _________________________ 41 Experimental Results • Device: a MacBook Air laptop computer with a 1.8 GHz Intel Core i7 CPU and 4 GB memory • Parameter: • σ = 0.1 (non-local cost aggregation) • Source : Middlebury http://vision.middlebury.edu/stereo/ HHI database(book arrival) Microsofy i2i database(Ilkay) 42 Experimental Results • Time: • Proposed average runtime : 90 milliseconds (1.25× slower) • Unnormalized box filter average runtime : 72 milliseconds. • Local guided image filter average runtime : 960 milliseconds [7] C.Rhemann, A. Hosni, M. Bleyer, C. Rother, and M. Gelautz. Fast cost-volume filtering for visual correspondence and beyond. In CVPR ,2011. [24] P. Viola and M. Jones. Robust real-time face detection. International Journal of Computer Vision, volume 57, pages 137–154, 2003. 43 44 [7] C.Rhemann, A. Hosni, M. Bleyer, C. Rother, and M. Gelautz. Fast cost-volume filtering for visual correspondence and beyond. In CVPR ,2011. Experimental Results 45 Experimental Results 46 Experimental Results 47 Experimental Results • Different disparity level (depth of spanning tree) Max=7 48 Max=10 Max=14 49 Max=16 Max=20 50 Max=50 Max=75 51 Conclusion _________________________ 52 Conclusion • Contributions • Outperform all local cost aggregation methods both in speed and accuracy. • Present a near real-time stereo system with accurate disparity results. • Future works • Apply to parallel algorithms • Refine matching cost estimation 53
© Copyright 2026 Paperzz