Self-organised Social Systems Of Animals Mini Course Italy Day2 Hour 1 150909 Charlotte K. Hemelrijk, Theoretical Biology Centre for Ecological and Evolutionary Studies University of Groningen The Netherlands Complex Social Phenomena Birds Fish Primates Primate Societies • Diverse social systems • Competition • Dominance hierarchy Societies: Despotic Hierarchy: Steep Egalitarian Weak ( Vehrencamp, 1983) Despotic and Egalitarian Primate Societies Egalitarian Despotic Macaques (e.g., Thierry 1985, 1990) Long-tailed Macaque Despotic Egalitarian Hierarchy Steep Weak Attack Intensity Celebes Sparse Macaque Attack Asymmetry Male Migration Female choice etcetera Each difference: separate mechanism? This talk: one factor (intensity of aggression) Virtual Laboratory (Epstein & Axtel, 1996) Virtual World Inhabited by Entities (Hogeweg, 1988) • Move About and Aggregate • Perform Dominance Interactions Social-Spatial Structure Dominants in Center, Subordinates at Periphery Vary: Intensity of Aggression Individual-Oriented Model * World: Torus, Continuous Space * Activation: Local and Random * Agents: • Group and Compete • One Sex * Experiments and Analyses: •10 Runs for each Intensity of Aggression (High/Low) • Averages over 10 Runs torus Periodic boundary Rules Dominance SELECT NEAREST PARTNER Grouping OTHERS YES NO Consider DOMINANCE INTERACTION YES OTHERS WIN PERSSPACE? NO MOVE ON OTHER LOSES FLEE FROM OPPONENT CHASE OPPONENT NEARVIEW ? MOVETO OTHER YES MAXVIEW? NO TURN (SEARCH-ANGLE) Dominance Acquisition • Conventional: Quality of Individual (Ellis, 1994) • Self-Structuring: Chance and Self-reinforcing Effects of Winning and Losing (Chase et al, 1994) Dominance Interactions (Hogeweg & Hesper, 1983; Hemelrijk 1998, 1999, 2000) 1. DOM = Capacity to Win initDom 8 2. Upon Meeting, Conflict Risk Sensitive Hemelrijk (1998) DOMi 3. Prob(i wins from j) ~ DOMi = RelDom + DOMj 4. Updating Domi,n+1 := Domi,n ± (Wi,n - RelDom) * StepDom 0 or 1 Damped Positive Feedback Low High 0.10 1.0 Behavioural Measurement * Who Interacts with Whom * Dominance Hierarchy • Differentiation * Spatial Structure Centrality of Dominants Measurements Coefficient of Variation ( CV): CV SDDOM .100 AvDOM 30 CV High CV Low Dominance Differentiation Dom-Values 20 10 0 0 100 200 300 400 500 Time Spatial Centrality of Dominants 3 5 2 2 5 46 3 1 .5 5 1 .5 5 57 42 1 . 5 1 .5 4 5 7 2 4 4 1 4 1 46 7 1 .5 .5 2 .5 3 3 774 4 1 1 6 5 1 .5 3 1 .52 7 5 .5 6 4 6 563 6 1 34 7 5 6 63 5 1 4 6 5 3 6 6 6 6 3 4 7 3 6 64 6 3 547 1 .5 4 6 7 7 4 1 .5 7 3 1 .5 6 4 3 6 6 7 7 7 5 5 5 6 3 1 . 5 5 3 1 .5 4 77 8 1 .5 7 4 4 7 3 3 7 4 5 5 6 7 2 1 .5 2 4 6 76 7 3 1 2 6 1 .53 54 31 7 . 513 .5 5 1 .5 5 1 .5 1 .5 6 51 5 4 1 5 1 .5 43 3 1 .5 3 7 2 1 2 2 2 3 5 7 5 41 .5 1 2 7 2 4 3 7 25 1 2 5 1 5 1 5 7 1 .5 1 6 4 2 2 1 7 6 6 .5 3 1 2 5 1 .5 1 .5 4 1 5 5 Y Negative Correlation: Dom-value and Vector for Being Surrounded at all Sides -5 -1 5 -2 5 -3 5 -3 5 -2 5 -1 5 -5 5 X 1 5 3 2 5 3 5 Results • Demo Dominance Differentiation 0 .9 0 .8 0 .7 0 .6 CoefficientofVariation 0 .5 0 .4 0 .3 0 .2 40 40 35 35 30 30 25 25 20 20 15 15 10 10 0 .1 0 .0 5 5 0 0 0 50 100 150 200 250 M ildS p e c ie s Low 300 0 50 100 150 200 250 300 F ie rc eS p e c ie s High Intensity of Attack Stronger Differentiation at High Intensity Asymmetry of Attack? Symmetry of Attack (Hemelrijk, 1990: Anim. Behav. 39, J. theor. Biol. 143) Receiver Actor A B C A B C A X 2 1 A X 12 22 SA Actor B 12 C 22 10 X 21 Receiver X B 2 X 21 SB C 1 10 X SC SS Negative correlation: Unidirectionality tKr Corrected for ties and N + Dominance Differentiation and Symmetry 0 .9 0 .8 -0.1 0 .7 0 .6 Symmetry CoefficientofVariation 0 .5 0 .4 0 .3 0 .2 40 40 35 35 30 30 25 25 20 20 15 15 10 10 0 .1 0 .0 -0.3 5 5 0 0 0 50 100 150 200 250 M ildS p e c ie s Low 300 0 50 100 150 200 250 300 F ie rc eS p e c ie s High Intensity of Attack -0.5 Low H igh IntensityofA ttack Stronger Differentiation, less Symmetry at High Intensity Cohesion and Reduction of Aggression 4 6 17.5 4 2 16.5 15.5 Low 3 8 High 14.5 13.5 12.5 11.5 Low 10.5 0 60 120 T im eu n its 180 Time units 240 FrequencyofAttack Distance 3 4 3 0 2 6 High 2 2 0 6 0 1 2 0 1 8 0 T im e -U n its Emergent: Not just internal Characteristic 2 4 0 Spatial Structure H ig hIn te n s ity 3 5 2 2 5 46 3 .5 5 1 .1 5 5 7 4 2 4 .5 5 1 .5 4 5 721 4 6 4 1 4 1 4 7 .1 5 .5 2 .5 3 36 7 7 4 4 1 1 5 1 .5 3 1 3 1 . 5 2 7 4 5 3 .5 6 4 6 5 6 6 3 7 5 6 6 5 1 4 6 76 5 3 66 6 46 3 4 3 6 6 3 5 4 7 1 . 5 4 1 .5 736 1 .5 6 7 7 44 355 666 31 7 .5 5 7 3 1 .57 4757 8 1 .5 7 4 7 3 374 54 56 7 2 1 .5 2 7 4 67 6 1 36 1 2 1 .5 5 531 7 . 513 1 .5 5 1 .5 1 .5 6 5 .5 3 4 5 4 14 5 1 . 5 3 .5 7 3 2 1 21 372 2 3 5 5 41 .5 2 7 24 3 1 7 5 1 2 1 1 5 25 715 1 .5 6 4 2 2 1 7 6 6 .5 3 1 2 5 1 .5 1 .5 1 5 Y 5 -5 -1 5 -2 5 -3 5 -3 5 -2 5 -1 5 -5 5 1 5 3 2 5 3 5 X No ‘Centripetal Instinct’ needed as in Selfish Herd Theory (Hamilton, 1971) High Intensity of Attack Distance FreqAttack 4 6 Dom-values 17.5 40 15.5 30 low 4 2 16.5 35 3 8 14.5 Distance 20 FrequencyofAttack 25 Distance 3 4 13.5 12.5 15 11.5 - 10 + 5 0 0 50 100 150 Time 200 250 60 120 180 240 2 6 2 2 0 6 0 1 2 0 1 8 0 T im e -U n its T im eu n its 2 4 0 high 300 Dominance Differentiation + 10.5 0 3 0 + Spatial Centrality of Dominants + + + + - Freq Attack - Stability of Hierarchy H ig hIn te n s ity 3 5 2 2 5 46 3 .5 5 1 .1 5 5 5 74 2 .5 1 .5 4 5 721 4 4 1 4 1 46 7 .1 5 .5 2 .5 3 36 774 4 1 1 5 1 .5 3 1 3 1 . 5 2 7 4 5 3 .5 6 4 6 6 36 76 5 653 1 45 6 3 6 5 4 76 366 6 46 635 4 7 1 .5 4 1 .5 736 1 .5 657 7 44 355 666 31 77 .5 5 7 3 1 .57 4 7 8 1 .5 76 7 4 4 7 3 374 55 2 1 .5 2 4 67 6 7 3 1 2 6 1 .535 4 1 7 .5 51 513 .5 531 . .5 1 .5 6 51 5 4 1 5 1 .5 4 3 3 .5 3 7 2 1 21 2 3 5 772 24 5 41 .5 2 3 17 2 5 5 1 2 1 1 5 715 1 .5 6 4 2 2 1 7 . 5 6 6 3 1 2 5 1 .5 Positive Feedback 1 .5 4 1 5 Y 5 -5 -1 5 -2 5 -3 5 -3 5 -2 5 -1 5 -5 5 X 1 5 3 2 5 3 5 between Spatial Structure and Hierarchy Test by weakening spatial structure Make group less compact Rules Dominance Grouping SELECT NEAREST PARTNER OTHERS YES NO YES DOMINANCE INTERACTION OTHERS WIN NEARVIEW ? PERSSPACE? NO MOVE ON OTHER LOSES MOVETO OTHER FLEE FROM OPPONENT YES MAXVIEW? NO TURN (SEARCH-ANGLE): 180° or 45° CHASE OPPONENT Grouping: ? ? Loose groups (Equal Aggression Frequency, Hemelrijk, 1999) 0 .8 1.0 0 .7 0.8 0 .6 0 .5 0 .4 CentralityofDominants C.V.Dom-values 0.6 0.4 0.2 0.0 C ohes iv eLoos e 0 .3 0 .2 0 .1 0 .0 -0 .1 C o h e siveL o o se Self-Organisation via Spatial Constraints Real Macaques Model Despotic and Egalitarian More Intense Attack associated with: • • • • Symmetry of Attack Cohesion Freq of Attack Rank-Related Behaviour • Centrality of Dominants • • • • Same Same Same Same (Thierry, 1985, 1990; Caldecott, 1986; de Waal & Luttrell, 1989) • Indications in space and grooming One Trait Only ? Study interconnection of traits in real animals 2.2 Primate Groups • Bi-sexual – Males bigger than females (1.5 * size females) – Males intenser in their fights (more biting) than females • In model represent sexes by difference in – initDom (like body size, physiology) – StepDom (Intensity of fighting) Dominance Interactions (Hogeweg & Hesper, 1983; Hemelrijk 1999,2000) 1. DOM = Capacity to Win VirtualMales: 16(32) VirtualFemales: 8(16) 2. Upon Meeting Risk Sensitive Conflict Hemelrijk 1998 DOMi 3. Prob(i wins from j) ~ DOMi + DOMj = RelDom 4. Updating Domi:= Domi + (wi - RelDom) * StepDom 0 or 1 Damped Positive Feedback Low High VirtualMales: 0.10 1.0 VirtualFems: 80% of Males Inter-sexual Dominance H ig hIn te n s ity L o w 4 0 4 0 3 6 Fe m M a le 3 2 High Intensity • Greater Female Dominance • Lower Lowest Males 3 0 2 8 Dom-values Dom-values 2 4 2 0 1 6 1 2 2 0 1 0 8 4 0 0 6 0 1 2 0 T im e -U n its 1 8 0 2 4 0 0 0 6 0 1 2 0 1 8 0 2 4 0 Tim e -U n its Support in despotic societies • GreaterFemale Dominance: Coalitionary Tendency (Thierry 1990) • More Male migration (Caldecott, 1986) Integrative Model (Grouping and Competition among Agents) Egalitarian Society Intensity of Aggression • • • • Cohesion Frequency of Attack Symmetry Spatial-Social Structure – Grooming Despotic Society • Female Dominance (Hemelrijk et al 2008) – Female Choice – Male Migration Inter-sexual dominance? Influenced by: • • • • • • Intensity of aggression Frequency of aggression Cohesion of group Attraction between sexes % males in group Sexual dimorphism Intensity of Aggression (Hemelrijk 1999) The sexes H ig hIn te n s ity L o w High Intensity Low 4 0 4 0 3 6 Fe m M a le 3 2 3 0 2 8 Males 2 0 1 6 1 2 8 4 0 0 Females 6 0 1 2 0 1 8 0 T im e -U n its MM MM FF FF 2 4 0 Dom-values Dom-values 2 4 2 0 1 0 0 0 6 0 1 2 0 Tim e -U n its Rel H Pos F = 0 /16 1 8 0 2 4 0 F M M F M F F M Female dominance 4 2 1 1 __ 8 Rel FemDom = FemDom/ MaxFemDom = 8 /16 = 0.5 More intense Aggression, More female Dominance Due to Stronger Differentiation Also due to higher frequency of aggression → Frequency of Aggression, Food Distribution and Group Cohesion Hemelrijk, Wantia, Daetwyler (2003) • DomWorld with Food and Feeding Behaviour – Food Trees • # = 36 Trees • Degree of clumping (High, Medium, Low) • Regrowth exponential • InitEnergy = 20, MaxEnergy = 50 units Low Medium – Feeding behaviour • Energy > 35, statiated: grouping and competing • Hunger: if Energy < 35 Prob of SearchFood increases • Digestion 0.5 units per time-unit High Clumping of Food Sources medium high 0.470 0.465 0.460 0.455 0.450 0.445 0.440 0.435 CV Dominance Hierarchical Differentiation low 0.430 0.425 Low Medium High Clumping of Food Steeper Hierarchy and Clearer Spatial Structure Density Effect on Hierarchical Differentiation Hierarchy Measure of Female Co-dominance # Males below Female 1+2 = 3 Mann Whitney U-value U := S of # Males below Females 2 0 + ____ U = 5 Umax = 9 RelHPos =0.55 2.8 2.6 More Female Dominance due to Cohesion (due to Food Clumping) 2.4 2.2 2.0 1.8 Medium 1.6 1.4 High 1.2 1.0 0.8 0.4 Low Clumping 0.2 0.0 Fema Female Dominance depends on Environment! 0.6 -0.2 0 50 100 150 200 Time Units 250 300 Empirical Relevance of greater dominance of females to males? • Receipt of – less aggression by males – Less ‚rapes‘ – More tolerance by males • Alternative to exchange Male ‚Tolerance‘ Females are attractive during Tumescence Males compete for Females • Monopolise • ‘Friendly Strategy’: Food for Sex, e.g. chimpanzees Male Reproductive Strategy (Tutin, 1979) Males • Male ‘tolerance’ to females at food sources Males share food with same Female • with whom they mate more often ? • to whom they bear more offspring ? No Statistical Evidence (Hemelrijk et al. 1992;Hemelrijk, Meier, Martin 1999) Why are males ‘tolerant’ to tumescent females ? Sexual Attraction DominanceWorld High Intensity (Despotic) Low Intensity (Egalitarian) Sexual Attraction ? Male ‘Tolerance’ as side-effect ? Add attraction of males to females Male Attraction to Females Rules Dominance Grouping SELECT NEAREST PARTNER OTHERS YES NO FEMALE ? YES DOMINANCE INTERACTION NEARVIEW ? NO YES MOVETO HER NO MOVE ON OTHERS WIN OTHER LOSES FLEE FROM OPPONENT GOTO OPPONENT PERSSPACE? MOVETO OTHER YES MAXVIEW? NO TURN SEARCH-ANGLE meanDomValue High Aggression-Intensity: Attraction versus No Attraction F e m a le s 2 0 1 9 1 8 1 7 1 6 1 5 1 4 1 3 1 2 1 1 1 0 9 8 7 6 5 0 M a le s A ttra c tio n N oA ttra c tio n 6 0 1 2 0 1 8 0 T im eU n its 2 4 0 2 0 1 9 1 8 1 7 1 6 1 5 1 4 1 3 1 2 1 1 1 0 9 8 7 6 5 -2 0 N oA ttra c tio n A ttra c tio n 4 0 1 0 0 1 6 0 2 2 0 T im eu n its Attraction equalizes dominance of both sexes 2 8 0 Sexual Attraction and Female Dominance to Males (Hemelrijk et al 2003) Sexual attractiveness: synchronous or asynchronous (interval 5, 13, 52) 8 Synchronous Asyn 13 7 6 Asyn 5 5 4 3 Asyn 52 No Attraction 2 Fem dom to males Relative Female Dominance S of # of males ranking below each female 1 0 time units More female co-dominance during attractive period Similar for synchronous and asynchronous attraction Cause? Group Cohesion? Distance C o h e sio n 1 4 1 2 1 0 8 6 4 2 0 A ttra ctio n N oA ttra ctio n Cohesion Centrality of Dominants Hierarchical Development Same 50 Asynchronous: Interval of 5, 13, 52 40 30 20 10 # M-F interactions #MF interactions Interactions between sexes 0 Attr M to 1F 5 M to 1F 52 No no NoAttr Syn Asyn5 Asyn13 Asyn52 M to F M to 1F 13 Attraction More Interactions Between the Sexes • Higher Chance for Incidental Victories • Stronger Increase Greater Female Dominance Interactions among males Asynchronous 40 30 20 10 # MM interactions #MM interactions 50 0 no Attr No No Attr Syn Syn M to F Attraction M to 1F 55 Asyn Asyn5 to 1F 52 Asyn Asyn13 13 MAsyn Asyn52 52 M to 1F 13 More interactions among males Males meet near single attractive female ! Stronger Hierarchical Differentiation among Males 0.7 Asyn 13 0.6 Asyn 52 0.5 Asyn 5 0.4 Synchronous Asyn 5 CV Males 0.3 no Attraction 0.2 0.1 time units if females are attractive asynchronously smaller dominance differences between the sexes Female Attractiveness (Hemelrijk, Wantia, Dätwyler, 2003) Results in More Female Dominance to Males • During Synchronous Attractiveness by: – More Interactions between Sexes • Asynchronous Attractiveness by: – More Interactions and Hierarchical Differentiation among Males Female Dominance and Attraction Increases Male ‚Tolerance‘ Neutral Proximity Initiated by Males to Females Looks like Males Initiate to Females Male ‚tolerance‘ 14 Neutral Prox 12 Attraction 10 But is nothing else than ‘Risk avoidance’ to Females 8 6 4 No Attraction 2 0 60 120 Time Units 180 240 Alternative for ‚Male Tolerance‘ and ‚Sexual Exchange‘ ! No individual exchange (Hemelijk, Meier, Martin, 1999) Male Attraction to Females Summary Interactions • Between Sexes • Among Males Female Co-Dominance with Males Male Neutral Proximity to Females Alternative to ‚Tolerance‘ ‚Friendship‘ Empirical data?
© Copyright 2025 Paperzz