FOURIER TRANSFORMS JELMAAN FOURIER: • Definition of the Fourier transforms • Relationship between Laplace Transforms and Fourier Transforms • Fourier transforms in the limit • Properties of the Fourier Transforms • Circuit applications using Fourier Transforms • Parseval’s theorem • Energy calculation in magnitude spectrum CIRCUIT APPLICATION USING FOURIER TRANSFORMS • Circuit element in frequency domain: RR L jL 1 C jC Example 1: • Obtain vo(t) if vi(t)=2e-3tu(t) Solution: • Fourier Transforms for vi 2 Vi ( ) 3 j Transfer function: Vo ( ) 1 / j H ( ) Vi ( ) 2 1 / j 1 1 j 2 Thus, Vo ( ) Vi ( ) H ( ) 2 (3 j )(1 j 2 ) 1 (3 j )(0.5 j ) From partial fraction: 0.4 0.4 Vo ( ) 3 j 0.5 j • Inverse Fourier Transforms: vo (t ) 0.4(e 0.5t 3t e )u (t ) Example 2: • Determine vo(t) if vi(t)=2sgn(t)=-2+4u(t) Solution: 4 vi 2 sgn( t ) Vi ( ) j 4 H ( ) 4 j Vo ( ) H ( )Vi ( ) 16 j ( 4 j ) A B j 4 j 4 4 Vo ( ) j 4 j 4 t vo (t ) 2 sgn( t ) 4e u (t ) JELMAAN FOURIER: • Definition of the Fourier transforms • Relationship between Laplace Transforms and Fourier Transforms • Fourier transforms in the limit • Properties of the Fourier Transforms • Circuit applications using Fourier Transforms • Parseval’s theorem • Energy calculation in magnitude spectrum PARSEVAL’S THEOREM Energy absorbed by a function f(t) W1 f (t )dt 2 Parseval’s theorem stated that energy also can be calculate using, 2 1 f (t )dt F d 2 2 • Parseval’s theorem also can be written as: 2 1 2 f ( t ) dt F d 0 PARSEVAL’S THEOREM DEMONSTRATION • If a function, f (t ) e a t • Integral left-hand side: e 2a t 0 dt e dt e 2 at 0 2 at 0 e 2a 2 at 2 at e 2 a 1 1 1 2a 2a a 0 dt • Integral right-hand side: 1 0 2 4a d 2 2 2 (a ) 1 1 1 tan 2 2 2 2a a a a 0 4a 2 2 1 0 0 0 2a a JELMAAN FOURIER: • Definition of the Fourier transforms • Relationship between Laplace Transforms and Fourier Transforms • Fourier transforms in the limit • Properties of the Fourier Transforms • Circuit applications using Fourier Transforms • Parseval’s theorem • Energy calculation in magnitude spectrum ENERGY CALCULATION IN MAGNITUDE SPECTRUM • Magnitude of the Fourier Transforms squared is an energy density (J/Hz) 1 0 F 2f 2 df 2 F 2f df 2 0 2 • Energy in the frequency band from ω1 and ω2: W1 1 2 F d 2 1 1 2 1 2 1 F d 2 2 2 F 1 2 d Example 1: • The current in a 40Ω resistor is: 2t i 20 e u(t ) A • What is the percentage of the total energy dissipated in the resistor can be associated with the frequency band 0 ≤ ω ≤ 2√3 rad/s? Solution: • Total energy dissipated in the resistor: W40 40 400e dt 4t 0 4t e 16000 4 4000 J 0 Check the answer with parseval’s theorem: • Fourier Transform of the current: 20 F ( ) 2 j • Magnitude of the current: F ( ) 20 4 2 40 400 W40 d 2 0 4 16000 1 1 tan 2 2 0 8000 4000 J 2 • Energy associated with the frequency band: W40 40 2 3 0 400 d 2 4 2 3 16000 1 1 tan 2 20 8000 8000 J 3 3 • Percentage of the total energy associated: 8000 / 3 100 66.67% 4000 Example 2: • Calculate the percentage of output energy to input energy for the filter below: 5t vi 15e u (t )V 10k vi 10F vo • Energy at the input filter: Wi (15e 5t 2 0 10t ) dt e 225 22.5 J 10 0 • Fourier Transforms for the output voltage: Vo ( ) Vi ( ) H ( ) 15 Vi ( ) 5 j 1 / RC 10 H ( ) 1 / RC j 10 j • Thus, 150 Vo ( ) (5 j )(10 j ) 22500 2 Vo ( ) 2 2 ( 25 )(100 ) • Energy at the output filter: Wo 1 0 22500 d 2 2 (25 )(100 ) 1 300 300 2 2 0 0 25 100 300 1 1 15 J 5 2 10 2 • Thus the percentage: 15 (100 ) 66.67% 22.5
© Copyright 2025 Paperzz