geometric representationS OF distinct hamiltonian circuits in

GEOMETRIC REPRESENTATIONS OF DISTINCT HAMILTONIAN
CIRCUITS IN COMPLETE GRAPH DECOMPOSITION
MAIZON MOHD DARUS
MASTER OF SCIENCE (MATHEMATICS)
UNIVERSITI UTARA MALAYSIA
2015
Permission to Use
In presenting this thesis in fulfilment of the requirements for a postgraduate
degree from Universiti Utara Malaysia, I agree that the Universiti Library may
make it freely available for inspection. I further agree that permission for the
copying of this thesis in any manner, in whole or in part, for scholarly purpose
may be granted by my supervisor(s) or, in their absence, by the Dean of Awang
Had Salleh Graduate School of Arts and Sciences. It is understood that any
copying or publication or use of this thesis or parts thereof for financial gain
shall not be allowed without my written permission. It is also understood that
due recognition shall be given to me and to Universiti Utara Malaysia for any
scholarly use which may be made of any material from my thesis.
Requests for permission to copy or to make other use of materials in this thesis,
in whole or in part, should be addressed to :
Dean of Awang Had Salleh Graduate School of Arts and Sciences
UUM College of Arts and Sciences
Universiti Utara Malaysia
06010 UUM Sintok
i
Abstrak
Penggambaran bagi perwakilan geometri untuk litar Hamiltonan berbeza dalam
graf lengkap diperlukan untuk mengelakkan kemiripan struktur dalam aplikasi
sebenar. Walau bagaimanapun, terdapat hanya sebilangan kecil kajian yang
mempertimbangkan penggambaran graf sedangkan ramai penyelidik memberi
tumpuan terhadap masa pengiraan. Oleh itu, kajian ini bertujuan untuk membina
satu kaedah gambaran baharu iaitu Kaedah Rama-rama Separuh (HBM) untuk
menyelesaikan senario tersebut. Bagi membina HBM, satu konsep Strategi
Sayap baharu diperkenalkan untuk mendapatkan arah dari satu bucu ke bucu
yang lain. Seterusnya, arah ini digunakan untuk memetakan bucu-bucu yang
berbeza. Bagi mendapatkan litar Hamiltonan berbeza, konsep matriks
transposisi digunakan untuk mengesan imej cermin bagi litar tersebut. Beberapa
teorem dan lema baharu dibuktikan dalam penghuraian graf lengkap kepada litar
Hamiltonan berbeza. Selanjutnya, hasil HBM ini digunakan untuk
menyenaraikan semua pilih atur ๐‘›! dan beberapa teorem berkaitan dibentuk.
Kesimpulannya, kajian ini berjaya menghasilkan satu kaedah baharu untuk
menggambarkan litar Hamiltonan berbeza dalam penghuraian graf lengkap.
Kata kunci: Graf lengkap, Kaedah Rama-rama Separuh, Litar Hamilton,
Penghuraian graf
ii
Abstract
Visualization of geometric representations of distinct Hamiltonian circuits in
complete graphs is needed to avoid structures resemblance in real application.
However, there are only a few studies that consider graph visualization, whereas
most researchers focus on computation time. Thus, this study aims to construct
a novel picturing method called Half Butterfly Method (HBM) to address the
aforementioned scenario. Towards developing HBM, the concept of Wing
Strategy is introduced to create directions from one vertex to another vertex.
Then, these directions are used to map distinct vertices. In order to obtain the
distinct Hamiltonian circuits, the concept of matrix transpose is used to capture
the mirror image of that circuit. Several new theorems and lemmas are proved
in the decomposition of complete graphs into distinct Hamiltonian circuits.
Furthermore, the result of HBM is applied to list ๐‘›! permutations and some
related theorems are established. In conclusion, this study successfully produced
a novel method to visualize distinct Hamiltonian circuit in complete graph
decomposition.
Keywords: Complete graph, Hamiltonian circuit, Graph decomposition
iii
Acknowledgement
In the name of Allah, the Most Gracious and the Most Merciful. Thank
you Allah for Your will and blessings that I am able to complete this thesis.
If I gave a name check to absolutely everyone who has helped make this
study possible, then these thank yous would run into tens of pages. The
generosity of spirit, inspiration and time which has been given by all those
involved is stunning, from all who have donated ideas and made sure that this
very interesting studies is piled high on the shelves. For those who have worked
around the clock to make this study every bit as good as the first, I thank you all.
Of course there are a few names who simply must get a mention. First
and foremost, special thanks to my supportive and enthusiastic supervisors,
Assoc. Prof. Dr. Haslinda binti Ibrahim and Dr. Sharmila binti Karim for their
guidance, patience and nurturing during the preparation of this thesis. Without
their mentoring and unbelievable amount of support that went beyond the call of
duty, this thesis would not have been possible.
I also want to express my special gratitude to Dr. Adyda binti Ibrahim
and all my friends for their tremendous helps, frequent advices and supports
along my full winding journey.
Finally, I am immensely grateful to my beloved mother, Che Seha
Ahmad for her endless supports, love and happiness that she have given me, as
well as for her tolerance of me during the frustrating times of my graduate
studies.
This thesis is dedicated to them.
Thank you.
iv
Declaration Associated with this Thesis
Darus, M. M., Ibrahim, H. & Karim, S. (2015). The construction of distinct
circuits of length six for complete graph ๐พ6 . International Journal of
Applied Mathematics and Statistics, 53(1), 17-31.
Darus, M. M., Ibrahim, H., Karim, S., Omar, Z., & Ahmad, N. (2014). Complete
graph ๐พ4 decomposition into circuits of length 4. Proceedings of the 21st
National Symposium on Mathematical Sciences (SKSM 21), 1605, 605610.
Darus, M. M., Ibrahim, H., & Karim, S. (2013). On the generation of distinct
circuits via complete graph decomposition. The First Innovation and
Analytics Conference and Exhibition, 26-32.
v
Table of Contents
Permission to Use ........................................................................................................... i
Abstrak .......................................................................................................................... ii
Abstract ........................................................................................................................ iii
Acknowledgement ........................................................................................................ iv
Declaration Associated with this Thesis.........................................................................v
Table of Contents ......................................................................................................... vi
List of Tables .............................................................................................................. viii
List of Figures .............................................................................................................. ix
List of Appendices........................................................................................................ xi
List of Symbols ........................................................................................................... xii
List of Abbreviations .................................................................................................. xiii
INTRODUCTION .............................................................. 1
1.1 General Reviews on Graph ........................................................................... 1
1.1.1 Hamiltonian Graph ............................................................................. 4
1.2 Graph Decomposition ................................................................................... 5
1.3 Motivation of the Study ................................................................................ 6
1.4 Research Questions ....................................................................................... 8
1.5 Research Objectives ...................................................................................... 8
1.6 Thesis Outline ............................................................................................... 8
RELATED MATERIALS AND DEFINITIONS ......... 10
2.1 The Shift-and-Rotate Strategy and the Butterfly Strategy .......................... 10
2.2 Related Materials and Definitions .............................................................. 11
SOME NUMERICAL EXAMPLES .......................... 17
3.1 Definitions and Terminologies ................................................................... 17
3.2 Some Examples of the Proposed Method ................................................... 18
3.2.1 Case ๐พ3 ............................................................................................. 19
3.2.2 Case ๐พ4 ............................................................................................. 21
3.2.3 Case ๐พ5 ............................................................................................. 31
3.2.4 Case ๐พ6 ............................................................................................. 42
vi
THE HALF BUTTERFLY METHOD ........................ 57
4.1 Wing Strategy ............................................................................................. 59
4.2 ๐พ๐‘› Decomposition into Distinct Hamiltonian Circuits with Different Path 72
4.3 Conceptual Results on the HBM................................................................. 79
4.4 Conclusion .................................................................................................. 89
AN APPLICATION OF THE HALF BUTTERFLY
METHOD ........................................................................................................ 90
5.1 The Permutation of ๐‘› Elements .................................................................. 90
5.2 The Permutation of Three Elements using the HBM.................................. 91
5.3 The Permutation of Four Elements using the HBM ................................... 92
5.4 The Permutation of Five Elements using the HBM .................................... 94
5.5 The Permutation of ๐‘› Elements using the HBM ........................................ 98
CONCLUSION ................................................................. 102
6.1 Summary of Each Chapter ........................................................................ 102
6.2 Contribution of the Study.......................................................................... 104
6.3 Suggestion for Future Research ................................................................ 105
6.4 Discussion ................................................................................................. 112
REFERENCES .............................................................................................. 113
APPENDICES ............................................................................................... 117
vii
List of Tables
Table 4.1: Differences between BS and HBM. ...................................................................... 57
Table 4.2: The steps of HBM. ................................................................................................ 58
Table 4.3: Creating directions in block 1. .............................................................................. 68
Table 4.4: Creating directions in block 2. .............................................................................. 69
Table 4.5: Creating directions in block 3. .............................................................................. 70
Table 4.6: Creating directions in the final block. ................................................................... 71
Table 5.1: The permutations of three elements ...................................................................... 92
Table 5.2: The permutations of four elements. ...................................................................... 93
Table 5.3: The permutations of five elements........................................................................ 94
Table 6.1: The number of different structure of distinct Hamiltonian circuits from ๐พ๐‘› . ..... 105
Table 6.2: Analysis of distinct Hamiltonian circuits with different structure for ๐พ5 . .......... 108
Table 6.3: Analysis of distinct Hamiltonian circuits with different structures for ๐พ6 . ........ 110
viii
List of Figures
Figure 1.1. Routes for five historical sites in Malacca (this map has been modified from
Google maps) ........................................................................................................................... 1
Figure 2.1. Isomorphic graphs ............................................................................................... 14
Figure 3.1. Circuit ๐ด is isomorphic to circuit ๐ต ..................................................................... 18
Figure 3.2. A complete graph ๐พ3 ........................................................................................... 19
Figure 3.3. The circuits from ๐พ3 ............................................................................................ 19
Figure 3.4. The distinct Hamiltonian circuit with different paths from ๐พ3 ............................ 20
Figure 3.5. Several circuits from ๐พ4 ...................................................................................... 21
Figure 3.6. The same circuits from ๐ต with different starting point........................................ 22
Figure 3.7. The same circuits from ๐ถ with different starting point ........................................ 22
Figure 3.8. The same circuits from ๐น with different starting point ........................................ 23
Figure 3.9. Three distinct Hamiltonian circuits with different paths from ๐พ4 ....................... 24
Figure 3.10. Creating directions in block 1 for ๐พ4 ................................................................ 25
Figure 3.11. Creating directions in block 2 for ๐พ4 ................................................................ 26
Figure 3.12. Creating directions in block 3 for ๐พ4 ................................................................ 27
Figure 3.13. Fix-and-shift for ๐พ4 where vertex 1 is fixed ..................................................... 28
Figure 3.14. Fix-and-shift for ๐พ4 where vertex 2 is fixed ..................................................... 28
Figure 3.15. Fix-and-shift for ๐พ4 where vertex 3 is fixed ..................................................... 29
Figure 3.16. Fix-and-shift for ๐พ4 where vertex 4 is fixed ..................................................... 29
Figure 3.17. The three distinct Hamiltonian circuits with different paths from ๐พ4 ............... 31
Figure 3.18. A complete graph ๐พ5 ......................................................................................... 32
Figure 3.19. Creating directions in block 1 for ๐พ5 ................................................................ 33
Figure 3.20. Creating directions in block 2 for ๐พ5 ................................................................ 34
Figure 3.21. Creating directions in block 3 for ๐พ5 ................................................................ 35
Figure 3.22. Creating directions in block 4 for ๐พ5 ................................................................ 36
Figure 3.23. Fix-and-shift for ๐พ5 where vertex 1 is fixed ..................................................... 37
Figure 3.24. Fix-and-shift for ๐พ5 where vertex 2 is fixed ..................................................... 38
Figure 3.25. Fix-and-shift for ๐พ5 where vertex 3 is fixed ..................................................... 38
Figure 3.26. Fix-and-shift for ๐พ5 where vertex 4 is fixed ..................................................... 39
Figure 3.27. Fix-and-shift for ๐พ5 where vertex 5 is fixed ..................................................... 39
ix
Figure 3.28. Drawing the circuits for ๐พ5 ............................................................................... 41
Figure 3.29. Several circuits from ๐พ6 .................................................................................... 43
Figure 3.30. Creating directions in block 1 for ๐พ6 ................................................................ 45
Figure 3.31. Creating directions in block 2 for ๐พ6 ................................................................ 46
Figure 3.32. Creating directions in block 3 for ๐พ6 ................................................................ 47
Figure 3.33. Creating directions in block 4 for ๐พ6 ................................................................ 48
Figure 3.34. Creating directions in block 5 for ๐พ6 ................................................................ 49
Figure 3.35. Fix-and-shift for ๐พ6 where vertex 1 is fixed ..................................................... 50
Figure 3.36. Fix-and-shift for ๐พ6 where vertex 2 is fixed ..................................................... 51
Figure 3.37. Fix-and-shift for ๐พ6 where vertex 3 is fixed ..................................................... 52
Figure 3.38. Fix-and-shift for ๐พ6 where vertex 4 is fixed ..................................................... 52
Figure 3.39. Fix-and-shift for ๐พ6 where vertex 5 is fixed. .................................................... 53
Figure 3.40. Fix-and-shift for ๐พ6 where vertex 6 is fixed ..................................................... 53
Figure 3.41. Drawing the circuits for ๐พ6 ............................................................................... 55
Figure 4.1. Creating direction using WS................................................................................ 59
Figure 4.2. Creating directions in block 1 for ๐พ๐‘› .................................................................. 73
Figure 4.3. Step of fix-and-shift, vertex ๐‘ฅ1 is fixed ............................................................... 74
Figure 4.4. Step of fix-and-shift, vertex ๐‘ฅ2 is fixed ............................................................... 75
Figure 4.5. Step of fix-and-shift, vertex ๐‘ฅ๐‘› is fixed ............................................................... 76
Figure 4.6. Drawing the circuits for all ๐พ๐‘› ............................................................................ 78
Figure 5.1. Hamiltonian circuit with ๐‘› vertices. .................................................................... 98
Figure 6.1. Two different structures of distinct Hamiltonian circuits with different paths
from ๐พ4 ................................................................................................................................ 107
Figure 6.2. Four different structures of distinct Hamiltonian circuits with different paths
from ๐พ5 ................................................................................................................................ 107
Figure 6.3. Fourteen different structures of distinct Hamiltonian circuits with different paths
from ๐พ6 . ............................................................................................................................... 109
x
List of Appendices
Appendix A Fix-and-shift for ๐พ4 ......................................................................................... 117
Appendix B Fix-and-shift for๐พ5 .......................................................................................... 118
Appendix C Twelve distinct mappings for ๐พ5 ..................................................................... 124
Appendix D Twelve distinct HC with different path from ๐พ5 ..........................................125
Appendix E Fix-and-shift for ๐พ6 ......................................................................................... 127
Appendix F Sixty distinct mappings for ๐พ6 ......................................................................... 137
Appendix G Sixty distinct HC with different path from ๐พ6 ................................................ 140
Appendix H Creating direction in block 1 for ๐พ๐‘› ................................................................ 150
Appendix I Creating direction in block 2 for ๐พ๐‘› ................................................................. 152
Appendix J Creating direction in block 3 for ๐พ๐‘› ................................................................. 154
Appendix K Creating direction in final block for ๐พ๐‘› .......................................................... 156
Appendix L Sequences of direction for ๐พ๐‘› .......................................................................... 158
xi
List of Symbols
๐‘ฎ
A graph consists of vertices and edges
๐‘ฝ(๐‘ฎ)
The vertices of a graph ๐บ
๐‘ฌ(๐‘ฎ)
The edges of a graph ๐บ
๐‘ฎ(๐‘ฝ, ๐‘ฌ)
A graph ๐บ with the set of vertices ๐‘‰(๐บ) and edges ๐ธ(๐บ)
๐‘ฒ๐’
A complete graph with ๐‘› vertices
๐‘ช๐’
A cycle with ๐‘› vertices
๐‘พ๐’
A complete directed graph with ๐‘› vertices
โˆ—
A circuit with ๐‘› vertices
๐‘ฒ๐’
๐‘ช๐’
A wheel with ๐‘› vertices
โˆ—
๐‘ท๐’
A path with ๐‘› vertices
๐‘ฒ๐’Ž,๐’
A bipartite graph with two disjoint sets, ๐‘š and ๐‘›
๐‘ฒ๐’„๐’Ž,๐’
The complement set of bipartite graph ๐พ๐‘š,๐‘›
๐‘ช๐‘ป๐’
A complete-transposition graph with ๐‘› vertices
๐‘บ๐’Œ
A star graph
๐‘ซ๐’“×๐’„
A Cartesian product with ๐‘Ÿ rows and ๐‘ columns
deg (๐’–)
The degree of vertex ๐‘ข where ๐‘ข is a vertex in any graph
๐’™๐’Š
A vertex in any graph, where 1 โ‰ค ๐‘– โ‰ค ๐‘›
๐’ โˆˆ โ„ค+
The total number of vertices of any graph, where ๐‘› is positive
๐€
The block for each direction in WS
๐œธ
Total permutations of ๐‘› elements
xii
List of Abbreviations
WS
Wing Strategy
BS
Butterfly Strategy
S-R
Shift-and-Rotate Strategy
HBM
Half Butterfly Method
xiii
INTRODUCTION
Graph decomposition is an important research in graph theory because it can
model several networks in our daily life such as social network, railway network
and internet network (Kante, 2008). In the literature, several studies regarding
graph decomposition have been focused such as the studies done by Granville,
Moisiadis and Rees (1989); Adams, Bryant, Forbes and Griggs, (2012); and Yuan
and Kuang, (2012); among others.
1.1 General Reviews on Graph
Let say, we are planning to visit five historic sites in Malacca without visiting
each site more than once. Figure 1.1 shows the routes connecting each site. From
the map, we need to manage possible route which will make sure we will never
visit any site twice.
Jonker
Walk
Cheng
Ho Art
Museum
Car park
Maritime
Museum
River
Cruise
Taming Sari
Tower
Figure 1.1. Routes for five historical sites in Malacca (this map has been
modified from Google maps)
1
The contents of
the thesis is for
internal user
only
REFERENCES
Adams, P., Bryant, D. E., Forbes, A. D., & Griggs, T. S. (2012). Decomposing the
complete graph into dodecahedra. Journal of Statistical Planning and
Inference, 142(5), 1040โ€“1046.
Akbari, S., & Herman, A. (2007). Commuting decompositions of complete graphs.
Journal of Combinatorial Designs, 15, 133-142.
Alon, N., & Erdos, P. (1989). Disjoint edges in geometric graphs. Discrete and
Computational Geometry, 4(1), 287-290.
Alon, N., & Perles, M. (1986). On the intersection of edges of a geometric graph by
straight line. Discrete Mathematics, 60, 75-90.
Anitha, R., & Lekshmi, R. S. (2008). N-Sun decomposition of complete, complete
bipartite and some harary graphs. International Journal of Mathematics
Sciences, 2(1), 33-38.
Avital, S., & Hanani, H. (1966). Graphs. Gilyonot Lematematika, 3, 2-8 (in Hebrew).
Babar, G. M., Khiyal, S. H., & Saeed, A. (2006). Finding Hamilton circuit in a graph.
Paper presented at the International Conference on Scientific Computing, CSC
2006, Las Vegas, Nevada, USA.
Botton, Q., Fortz, B., Gouveia, L., & Poss, M. (2013). Benders decomposition for the
hop-constrained survivable network design problem. INFORMS Journal on
Computing, 25(1), 13-42.
Brualdi, R. A., & Schroeder, M. W. (2011). Symmetric Hamilton cycle
decompositions of complete graphs minus a 1-factor. Journal of
Combinatorial Designs, 19(1), 1-15.
Chalaturnyk, A. (2008). A fast algorithm for finding Hamilton cycles. (Unpublished
Masters Dissertation), University of Manitoba, Canada.
Choi, D., Lee, O., & Chung, I. (2008). A parallel routing algorithm on recursive cube
of rings networks employing the Hamiltonian circuit Latin square. Information
Sciences, 178(6), 1533-1541.
Chung, I. (2000). Construction of a parallel and shortest routing algorithm on
recursive circulant networks. Paper presented at the Fourth International
Conference on High-Performance Computing in the Asia-Pacific Region,
Beijing, China.
Cranston, D. W. (2008). Nomadic Decompositions of Bidirected Complete Graphs.
Discrete Mathematics, 308(17), 3982-3985.
113
Dharwadker, A. (2004). A new algorithm for finding Hamiltonian circuits. Paper
presented at the Proceedings of the Institute of Mathematics on December
2004, University of Alaska, Fairbanks.
Dong, R. & Kresman, R. (2010). Notes of privacy-preserving distributed mining and
Hamiltonian cycles. Paper presented at the Fifth International Conference on
Software and Data Technologies, Athens, Greece.
Froncek, D., Kovar, P., & Kubesa, M. (2010). Decompositions of complete graphs
into blown-up cycles Cm[2]. Discrete Mathematics, 310(5), 1003-1015.
Fu, H. L., Hwang, F. K., Jimbo, M., Mutoh, Y., & Shiue, C. L. (2004). Decomposing
complete graphs into Kr x Kc's. Journal of Statistical Planning and Inference,
119, 225-236.
Gopal, A. P., Kothapalli, K., Venkaiah, V. C., & Subramaniam, C. R. (2007, April 2).
Various one-factorizations of complete graphs. 2007 Technical Report at
International Institute of Information Technology, Hyderabad, India.
Retrieved from http://people.csail.mit.edu/prasant/factorizations.pdf
Granville, A., Moisiadis, A., & Rees, R. (1989). On complementary decompositions
of complete graph. Graphs and Combinatorics, 5(1), 57-61.
Grebinski, V. (1998). Reconstructing a Hamiltonian cycle by querying the graph:
Application to DNA physical mapping. Discrete Applied Mathematics, 88,
147-165.
Gyarfas, A., Ruszinko, M., Sarkozy, G. N., & Szemeredi, E. (2011). Partitioning 3coloured complete graphs into three monochromatic cycles. The Electronic
Journal of Combinatorics, 18, P53.
Herman, I., Melancon, G., & Marshall, M. S. (2000). Graph visualization and
navigation in information visualization. IEEE Transactions on Visualization
and Computer Graphics: A Survey, 6(1), 24-43.
Hurley, E., & Oldford, R. W. (2008). Eulerian tour algorithms for data visualization
and the PairViz package. Computational Statistics, 26(4), 613-633.
Hwang, S. C., & Chen, G. H. (2000). Fault-free Hamiltonian cycles in faulty butterfly
graphs. Paper presented at the Seventh International Conference on Parallel
and Distributed Systems, Iwate, Japan.
Ibrahim, H., Omar, Z., & Rohni, A. M. (2010). New algorithm for listing all
permutations. Modern Applied Science, 4(2), 89-94.
114
Jeron, T., & Jard, C. (1995). 3D layout of reachability graphs of communicating
processes. Paper presented at the DIMACS International Workshop on Graph
Drawing, Princeton, NJ, USA.
Kante, M. M. (2008). Graph Structurings: Some Algorithmic Applications.
(Unpublished Doctoral Dissertation), University of Bordeaux I, Talence,
France.
Kaski, P., & Ostergard, P. R. J. (2009). There are 1, 132, 835, 421, 602, 062, 347
nonisomorphic one-factorizations of K14. Journal of Combinatorial Designs,
17(2), 147-159.
Kumar, C. S. (2003). On P4-decomposition of graphs. Taiwanese Journal of
Mathematics, 7(4), 657-664.
Lovasz, L. (2009). Geometric Representations of Graphs. (Unpublished Doctoral
Dissertation), Eoฬˆ tvoฬˆ s Loraฬ nd University, Budapest, Hungary.
Marcialis, G. L., Roli, F., & Serrau, A. (2007). Graph-based and structural methods
for fingerprint classification. Applied Graph Theory in Computer Vision and
Pattern Recognition, 52, 205-226.
Munzner, T. (2000). Interactive Visualization of Large Graphs and Networks.
(Unpublished Doctoral Dissertation), Stanford University, Carlifornia, USA.
Raney, R. K., Cahill, J. T. S., Patterson, G. W., & Bussey, D. B. J. (2012). The m-chi
decomposition of hybrid dual-polarimetric radar data with application to lunar
craters.
Journal
of
Geophysical
Research,
117(21).
doi: 10.1029/2011JE003986
Rao, M. (2006). Décompositions de Graphes et Algorithmes Efficaces. (Unpublished
Doctoral Dissertation), Université Paul Verlaine, Metz, France.
Rapanotti, L., Hall, J.G., Jackson, M., & Nuseibeh, B. (2004). Architecture-driven
problem decomposition. Paper presented at the 12th International Conference
on Requirements Engineering, Kyoto, Japan.
Riaz, K., & Khiyal, M. S. H. (2006). Finding Hamiltonian cycle in polynomial time.
Information Technology Journal, 5(5), 851-859.
Rosen, K. H. (2013). Discrete Mathematics and Its Applications (3rd ed.). New York,
USA: Mc Graw Hill.
Samee, M. A., & Rahman, M. S. (2007). Visualization of complete graphs, trees and
series-parallel graphs for practical applications. Paper presented at the
International Conference on Information and Communication Technology,
Dhaka, Bangladesh.
115
Shai, O., & Preiss, K. (1999). Graph theory representations of engineering systems
and their embedded knowledge. Artificial Intelligence in Engineering, 13(3),
273-285.
Shi, H. Z. & Niu, P. F. (2009). Hamiltonian decomposition of some interconnection
networks. Combinatorial Optimization and Applications, 5573, 231-237.
Shirinivas, S. G., Vetrivel, S., & Elango, N. M. (2010). Applications of graph theory
in computer science: An overview. International Journal of Engineering
Science and Technology, 2(9), 4610-4621.
Simonetto, P. (2011). Visualisation of Overlapping Sets and Clusters with Euler
Diagrams. (Unpublished Doctoral Dissertation), Université Bordeaux 1, Talence,
France.
Skiena, S. Implementing Discrete Mathematics: Combinatorics and Graph Theory
with Mathematica. Reading, MA: Addison-Wesley.
Studer, C., Blosch, P., Friedli, P., & Burg, A. (2007). Matrix decomposition
architecture for MIMO systems: design and implementation trade-offs. Paper
presented at the Conference Record of the 41st Asilomar Conference, Pacific
Grove, CA, USA.
Toth, G., & Valtr, P. (1999). Geometric graphs with few disjoint edges. Discrete
Computational Geometry, 22, 633-642.
West, D. B. (2001). Introduction to Graph Theory (2nd ed.). USA: Prentice Hall.
Wilson, R. J. (1988). A brief history of Hamiltonian graphs. Annals of Discrete
Mathematics, 41, 487-496.
Yuan, L. D., & Kang, Q. D. (2012). Decompostion of ฮปKv into five graphs with six
vertices and eight edges. Acta Mathematicae Applicatae Sinica, English Series,
28(4), 823-832.
116