Multilayer Overview • Current application • Optimization of Multilayers • Model Designs for GRI Grazing Incidence Optics: Past/Present/Future Chandra and XMM Monolitic and replicated Wolter1 optics Hero, High-energy replicated optics Single layer coated; Ir, Au InFocus, International Focusing Optics Collaboration, Pt/C HEFT, High Energy Focusing Optics, W/Si NuSTAR, XEUS, Constallation-X High Energy Focusing Telescope (HEFT) 6 m focal length Depth-graded W/Si Multilayers Energy range 20 – 70 keV Effective Area: ~70 cm2 @ 40 keV Over-constrained optics: 1.2’ HPD Field of view: 17’ @ 20 keV Collaboration: California institute of technology, Lawrence Livermore National Lab., Columbia University, Danish National Space Center The HEFT Optics Parameters: Number: 3 Type : Conical Approximation optic Size : 24 cm x 40 cm Material : W/Si, multilayers Energy range : 5 – 69 keV Multilayers: HEFT Production • Thermally slumped AF 45 borosilicate glass • Mirror thickness, 0.3 mm • Mirror length = 10 cm • Mirror radii: 4 cm < R < 12 cm Quartz Mandrel Glass Microsheet a) Lay down and machine graphite spacers b) Lay down glass (1) (2) c) Lay down and machine graphite spacers (3) (4) d) Lay down glass Multilayers: Design Power law: a Di (b i )c Multilayers: Optimization, The Figure Of Merit FOM N Emax i 1 Emin dE A(E )WE (E ) (Emax Emin ) WE • • A(E) effective area – A(E) = 2praL * [R(E,a)]2 [R(E,a)]2 reflectivity matrix, calculated with Nevot-Croce formalism • Winc(a,) angular weigthing function – Very CPU intensive • WE energy weigthing function = E(keV)/100 + 0.7 P. H. Mao et al, Applied Optics 38,p.4766-4775, 1999a Multilayers: Optimization Power law: • • a Di (b i )c Constants a and b are uniquely determined by Dmin and Dmax For a given max and min graze angle for a group Dmin and Dmax are determined by the Bragg equation D • hc 2E sin Multilayer recipes are optimized over: number of bilayers N high Z fraction G power law index c Model Designs for GRI • Double reflection Radius = 0.1 – 1.0 m Optimized E range = 20 – 500 keV • • = 0.17 – 0.56 m Modified Radius Double reflection Optimized E range = 40 – 500 keV Single reflection Radius = 0.09 – 0.44 m Optimized E range = 80 – 200 keV Common Parameters: Substrate thickness = 0.2 mm Mirror length = 0.6 m Focal length = 150 m Material Combination = W/Si Substrate = Si Radial Obs. Factor = 20% Design 1a: Double reflection a = 0.57’ – 5.73’ R = 0.1 – 1.0 m Group 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Emin 120 120 120 120 120 80 80 80 80 80 40 40 40 40 40 20 20 20 20 20 Emax 500 500 500 500 500 500 500 500 500 300 300 300 300 300 180 180 180 180 180 180 dmin 66,301 59,091 52,664 46,937 41,833 37,284 33,229 29,615 26,395 39,207 34,944 31,143 27,757 24,738 36,746 32,75 29,189 26,014 23,185 20,664 dmax 309,961 276,253 246,21 219,435 195,572 261,455 233,022 207,681 185,096 164,964 294,054 262,076 233,576 208,175 185,536 330,718 294,753 262,699 234,13 208,669 N 50 27 33 51 62 106 150 206 363 87 135 187 291 453 100 195 303 378 472 737 c 0,385 0,185 0,216 0,204 0,219 0,212 0,222 0,231 0,225 0,214 0,211 0,218 0,226 0,227 0,203 0,196 0,182 0,198 0,204 0,209 Gamma 0,300 0,500 0,494 0,472 0,509 0,404 0,436 0,428 0,399 0,468 0,379 0,394 0,392 0,361 0,450 0,327 0,351 0,356 0,386 0,385 Thick 0,512 0,211 0,234 0,311 0,340 0,517 0,654 0,804 1,245 0,439 0,617 0,761 1,056 1,461 0,470 0,818 1,103 1,244 1,391 1,938 Mass Design 1a 300 250 Kg 200 150 Mass 100 50 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Group Aeff @ 200 keV Aeff/Mass/Ageom * 100cm2 Aeff/Ageom 3 Aeff/Mass 2,5 Total mass = 2057 kg 2 1,5 Number of shells = 1144 Aeff @ 20 keV 200 keV cm2 13900 2023 1 0,5 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Design 1b: modified double reflection R = 0.17 – 0.56 m Emin 80 80 80 80 80 40 40 40 40 40 Emax 500 500 500 500 300 300 300 300 300 180 dmin 37,284 33,229 29,615 26,395 39,207 34,944 31,143 27,757 24,738 36,746 a 1.02’ – 3.22’ dmax 261,455 233,022 207,681 185,096 164,964 294,054 262,076 233,576 208,175 185,536 N 106 150 206 363 87 135 187 291 453 100 c 0,212 0,222 0,231 0,225 0,214 0,211 0,218 0,226 0,227 0,203 Gamma 0,404 0,436 0,428 0,399 0,468 0,379 0,394 0,392 0,361 0,450 Thick 0,517 0,654 0,804 1,245 0,439 0,617 0,761 1,056 1,461 0,470 Design 1a Design 1b Total mass = 824 kg Number of shells = 582 Aeff @ 20 keV 200 keV cm2 3653 1568 Design 2: Single Reflection R = 0.09 – 0.45 m a = 1.03’ – 5.125’ Group 1 2 3 4 5 6 7 8 9 10 Emin 80 80 80 80 80 80 80 80 80 80 Emax 200 200 200 200 200 200 200 200 200 200 dmin 88,509 75,351 64,149 54,613 46,494 39,582 33,698 28,688 24,424 20,793 dmax 259,91 221,272 167,447 142,554 121,362 116,235 98,956 74,884 63,752 54,275 N 37 30 30 30 37 57 120 233 453 262 c 0,416 0,104 0,194 0,243 0,279 0,285 0,243 0,242 0,211 2,841 Gamma 0,494 0,606 0,651 0,636 0,594 0,478 0,434 0,383 0,390 0,339 Thick 0,478 0,263 0,241 0,213 0,228 0,304 0,524 0,856 1,379 0,891 Design 2 Aeff cm2 @ Mass kg 20 keV 200 keV Design 2 190 2716 1160 Optionally: Same design can be used at F = 75 m, as a real focusing System, but with a slight loss in effective area. Total mass = 190 kg Number of shells = 433 Conclusions • Mass versus Effective area – Real focusing system or single reflection • Material combinations – W/Si chosen as a baseline – Pt/C, Pt/SiC, WC/SiC, ( Cu/SiC) Aeff cm2 @ Mass kg 20 keV 200 keV Design 1a 2057 13900 2023 Design 1b 824 3653 1568 Design 2 190 2716 1160 • Substrate technology – For arcsec performance new developments in substrates are needed – Inherited technology from XEUS, Constallation-X Grp 1 2 S Emin Emax dmin dmax N c Gamma Thick FOM 1 Si W Si 50 200 53.9 495.9 50 0.160 0.287 0.360 2 Si W Si 50 200 46.9 431.7 63 0.179 0.314 0.393 13.47 3 Si W Si 50 200 40.9 375.8 97 0.190 0.333 0.517 17.90 4 Si W Si 50 200 35.6 327.1 151 0.195 0.344 0.691 22.22 5 Si W Si 50 200 30.9 284.8 187 0.213 0.371 0.755 26.72 6 Si W Si 50 200 26.9 247.9 332 0.207 0.376 1.145 30.22 7 Si W Si 50 200 23.4 215.8 647 0.205 0.370 1.925 33.03 8 Si W Si 50 200 20.4 187.9 1010 0.202 0.372 2.601 32.74 9.96
© Copyright 2026 Paperzz