Introduction Results On Field Size and Success Probability in Network Coding Olav Geil, Ryutaroh Matsumoto, Casper Thomsen Workshop on Groebner bases and geometric codes, held at Dept. of Mathematics, University of Trento June 10, 2009 Olav Geil, Ryutaroh Matsumoto, Casper Thomsen[1em] On Field Size and Success [1em]Probability Workshop in onNetwork GroebnerCoding bases and g Introduction Results Introduction Results Min. field size Improving bound Interpret |Mw | Olav Geil, Ryutaroh Matsumoto, Casper Thomsen[1em] On Field Size and Success [1em]Probability Workshop in onNetwork GroebnerCoding bases and g Introduction Results The Usual Example u • Information network; DAG. v1 v2 • Unit capacity edges • Two unit source w1 v3 processes over F2m located at the source vertex u. v4 • Both receivers w1 and w2 Olav Geil, Ryutaroh Matsumoto, Casper Thomsen[1em] w2 wants information from both source processes. On Field Size and Success [1em]Probability Workshop in onNetwork GroebnerCoding bases and g Introduction Results The Usual Example X (1) u X (2) • Information network; DAG. v1 v2 • Unit capacity edges • Two unit source w1 v3 processes over F2m located at the source vertex u. v4 • Both receivers w1 and w2 Olav Geil, Ryutaroh Matsumoto, Casper Thomsen[1em] w2 wants information from both source processes. On Field Size and Success [1em]Probability Workshop in onNetwork GroebnerCoding bases and g Introduction Results The Usual Example X (1) u X (2) • Information network; DAG. v1 v2 • Unit capacity edges • Two unit source w1 v3 processes over F2m located at the source vertex u. v4 • Both receivers w1 and w2 Olav Geil, Ryutaroh Matsumoto, Casper Thomsen[1em] w2 wants information from both source processes. On Field Size and Success [1em]Probability Workshop in onNetwork GroebnerCoding bases and g Introduction Results Using Switching a X (1) u X (2) b 1 2 v1 v2 3 4 5 v3 v4 w1 Olav Geil, Ryutaroh Matsumoto, Casper Thomsen[1em] w2 On Field Size and Success [1em]Probability Workshop in onNetwork GroebnerCoding bases and g Introduction Results Using Switching 1 X (1) u X (2) 2 a b v1 v2 3 4 5 v3 v4 w1 Olav Geil, Ryutaroh Matsumoto, Casper Thomsen[1em] w2 On Field Size and Success [1em]Probability Workshop in onNetwork GroebnerCoding bases and g Introduction Results Using Switching 1 X (1) u X (2) 2 v1 a b v2 4 5 v3 a 3 b v4 w1 Olav Geil, Ryutaroh Matsumoto, Casper Thomsen[1em] w2 On Field Size and Success [1em]Probability Workshop in onNetwork GroebnerCoding bases and g Introduction Results Using Switching 1 X (1) u X (2) 2 v1 v2 b v3 3 4 5 a v4 w1 a Olav Geil, Ryutaroh Matsumoto, Casper Thomsen[1em] w2 b On Field Size and Success [1em]Probability Workshop in onNetwork GroebnerCoding bases and g Introduction Results Using Switching 1 X (1) u X (2) 2 v1 v2 3 4 5 v3 b v4 a w1 a Olav Geil, Ryutaroh Matsumoto, Casper Thomsen[1em] w2 b On Field Size and Success [1em]Probability Workshop in onNetwork GroebnerCoding bases and g Introduction Results Using Switching 1 X (1) u X (2) 2 v1 v2 3 4 5 v3 v4 b w1 a Olav Geil, Ryutaroh Matsumoto, Casper Thomsen[1em] w2 b a On Field Size and Success [1em]Probability Workshop in onNetwork GroebnerCoding bases and g Introduction Results Using Switching 1 X (1) u X (2) 2 v1 v2 3 4 5 v3 v4 w1 a b Olav Geil, Ryutaroh Matsumoto, Casper Thomsen[1em] w2 b a On Field Size and Success [1em]Probability Workshop in onNetwork GroebnerCoding bases and g Introduction Results Using Network Coding a X (1) u X (2) b 1 2 v1 v2 3 4 v3 v4 w1 Olav Geil, Ryutaroh Matsumoto, Casper Thomsen[1em] w2 On Field Size and Success [1em]Probability Workshop in onNetwork GroebnerCoding bases and g Introduction Results Using Network Coding 1 X (1) u X (2) 2 a b v1 v2 3 4 v3 v4 w1 Olav Geil, Ryutaroh Matsumoto, Casper Thomsen[1em] w2 On Field Size and Success [1em]Probability Workshop in onNetwork GroebnerCoding bases and g Introduction Results Using Network Coding 1 X (1) u X (2) 2 v1 a b v2 3 4 v3 a b v4 w1 Olav Geil, Ryutaroh Matsumoto, Casper Thomsen[1em] w2 On Field Size and Success [1em]Probability Workshop in onNetwork GroebnerCoding bases and g Introduction Results Using Network Coding 1 X (1) u X (2) 2 v1 v2 3 4 v3 a+b v4 w1 a Olav Geil, Ryutaroh Matsumoto, Casper Thomsen[1em] w2 b On Field Size and Success [1em]Probability Workshop in onNetwork GroebnerCoding bases and g Introduction Results Using Network Coding 1 X (1) u X (2) 2 v1 v2 3 4 v3 v4 a+b w1 a Olav Geil, Ryutaroh Matsumoto, Casper Thomsen[1em] w2 b On Field Size and Success [1em]Probability Workshop in onNetwork GroebnerCoding bases and g Introduction Results Using Network Coding 1 X (1) u X (2) 2 v1 v2 3 4 v3 v4 w1 a a+b Olav Geil, Ryutaroh Matsumoto, Casper Thomsen[1em] w2 b a+b On Field Size and Success [1em]Probability Workshop in onNetwork GroebnerCoding bases and g Introduction Results What About “Decoding”? wi must know how a and b is linearly combined. a 1 =a+b b 1 • Local coding vector Olav Geil, Ryutaroh Matsumoto, Casper Thomsen[1em] On Field Size and Success [1em]Probability Workshop in onNetwork GroebnerCoding bases and g Introduction Results What About “Decoding”? wi must know how a and b is linearly combined. a 1 =a+b b 1 • Local coding vector Olav Geil, Ryutaroh Matsumoto, Casper Thomsen[1em] On Field Size and Success [1em]Probability Workshop in onNetwork GroebnerCoding bases and g Introduction Results Formalizing . . . u v1 v2 v3 v4 w1 Olav Geil, Ryutaroh Matsumoto, Casper Thomsen[1em] w2 On Field Size and Success [1em]Probability Workshop in onNetwork GroebnerCoding bases and g Introduction Results Formalizing . . . u i fi,j v1 v2 j v3 v4 w1 Olav Geil, Ryutaroh Matsumoto, Casper Thomsen[1em] w2 On Field Size and Success [1em]Probability Workshop in onNetwork GroebnerCoding bases and g Introduction Results Formalizing . . . u i fi,j 1 2 3 4 v1 j v2 v3 5 6 7 v4 8 w1 Olav Geil, Ryutaroh Matsumoto, Casper Thomsen[1em] 9 w2 On Field Size and Success [1em]Probability Workshop in onNetwork GroebnerCoding bases and g Introduction Results Formalizing . . . u 1 i fi,j j 2 f1,5 v1 f1,3 3 f2,4 v2 f2,7 4 f3,6 v3 f4,6 5 6 7 f6,8 v4 f6,9 8 w1 Olav Geil, Ryutaroh Matsumoto, Casper Thomsen[1em] 9 w2 On Field Size and Success [1em]Probability Workshop in onNetwork GroebnerCoding bases and g Introduction Results Formalizing . . . u i fi,j 1 2 3 4 v1 j v2 v3 5 6 X (i) u j 7 v4 ai,j 8 w1 Olav Geil, Ryutaroh Matsumoto, Casper Thomsen[1em] 9 w2 On Field Size and Success [1em]Probability Workshop in onNetwork GroebnerCoding bases and g Introduction Results Formalizing . . . u a1,2 a1,1 2 a2,2 a2,1 1 i fi,j v1 v2 3 j 4 v3 5 6 X (i) u j 7 v4 ai,j 8 w1 Olav Geil, Ryutaroh Matsumoto, Casper Thomsen[1em] 9 w2 On Field Size and Success [1em]Probability Workshop in onNetwork GroebnerCoding bases and g Introduction Results Formalizing . . . X (i) u u 1 2 3 4 v1 v2 (w ) bi,j 1 v3 5 6 j v4 w1 8 w1 Olav Geil, Ryutaroh Matsumoto, Casper Thomsen[1em] 7 9 w2 On Field Size and Success [1em]Probability Workshop in onNetwork GroebnerCoding bases and g Introduction Results Formalizing . . . X (i) u u 1 2 3 4 v1 v2 (w ) bi,j 1 v3 5 j 7 v4 w1 (w ) b1,51 (w ) b2,51 Olav Geil, Ryutaroh Matsumoto, Casper Thomsen[1em] 6 w1 8 9 (w ) b1,81 (w ) b2,81 w2 On Field Size and Success [1em]Probability Workshop in onNetwork GroebnerCoding bases and g Introduction Results Formalizing . . . X (i) u u 1 2 3 4 v1 v2 (w ) bi,j 1 v3 5 6 j v4 w1 8 w1 Olav Geil, Ryutaroh Matsumoto, Casper Thomsen[1em] 7 9 (w ) b1,91 (w ) b2,91 (w ) w2 b1,71 (w ) b2,71 On Field Size and Success [1em]Probability Workshop in onNetwork GroebnerCoding bases and g Introduction Results Formalizing . . . (contd) u • Y (1) = a1,1 X (1) + a2,1 X (2) • Y (3) = f1,3 Y (1) • Y (6) = f3,6 Y (3) + f4,6 Y (4) In general: X X Y (j) = ai,j X (u) + fi,j Y (i) u (w ) 2 3 4 v1 v2 v3 5 6 i = 8 X (w ) bi,j Y (j) 7 v4 “Decoding”: bi 1 w1 9 w2 j Olav Geil, Ryutaroh Matsumoto, Casper Thomsen[1em] On Field Size and Success [1em]Probability Workshop in onNetwork GroebnerCoding bases and g Introduction Results Formalizing . . . (contd) u • Y (1) = a1,1 X (1) + a2,1 X (2) • Y (3) = f1,3 Y (1) • Y (6) = f3,6 Y (3) + f4,6 Y (4) In general: X X Y (j) = ai,j X (u) + fi,j Y (i) u (w ) 2 3 4 v1 v2 v3 5 6 i = 8 X (w ) bi,j Y (j) 7 v4 “Decoding”: bi 1 w1 9 w2 j Olav Geil, Ryutaroh Matsumoto, Casper Thomsen[1em] On Field Size and Success [1em]Probability Workshop in onNetwork GroebnerCoding bases and g Introduction Results Formalizing . . . (contd) u • Y (1) = a1,1 X (1) + a2,1 X (2) • Y (3) = f1,3 Y (1) • Y (6) = f3,6 Y (3) + f4,6 Y (4) In general: X X ai,j X (u) + fi,j Y (i) Y (j) = u (w ) 2 3 4 v1 v2 v3 5 6 i = 8 X (w ) bi,j Y (j) 7 v4 “Decoding”: bi 1 w1 9 w2 j Olav Geil, Ryutaroh Matsumoto, Casper Thomsen[1em] On Field Size and Success [1em]Probability Workshop in onNetwork GroebnerCoding bases and g Introduction Results Formalizing . . . (contd) u • Y (1) = a1,1 X (1) + a2,1 X (2) • Y (3) = f1,3 Y (1) • Y (6) = f3,6 Y (3) + f4,6 Y (4) In general: X X Y (j) = ai,j X (u) + fi,j Y (i) u (w ) 2 3 4 v1 v2 v3 5 6 i = 8 X (w ) bi,j Y (j) 7 v4 “Decoding”: bi 1 w1 9 w2 j Olav Geil, Ryutaroh Matsumoto, Casper Thomsen[1em] On Field Size and Success [1em]Probability Workshop in onNetwork GroebnerCoding bases and g Introduction Results Formalizing . . . (contd) u • Y (1) = a1,1 X (1) + a2,1 X (2) • Y (3) = f1,3 Y (1) • Y (6) = f3,6 Y (3) + f4,6 Y (4) In general: X X Y (j) = ai,j X (u) + fi,j Y (i) u (w ) 2 3 4 v1 v2 v3 5 6 i = 8 X (w ) bi,j Y (j) 7 v4 “Decoding”: bi 1 w1 9 w2 j Olav Geil, Ryutaroh Matsumoto, Casper Thomsen[1em] On Field Size and Success [1em]Probability Workshop in onNetwork GroebnerCoding bases and g Introduction Results Success Criterion Theorem # (ai,j ) 0 Mw := ; (w ) I − (fi,j ) (bi,j )T |Mw | = 6 0 in " F2 ⇐⇒ m Receiver w can decode. (Koetter et al. (2003) and Ho et al. (2006)) P := Olav Geil, Ryutaroh Matsumoto, Casper Thomsen[1em] Q w |Mw | = 6 0 in F2 m ? On Field Size and Success [1em]Probability Workshop in onNetwork GroebnerCoding bases and g Introduction Results Success Criterion Theorem # (ai,j ) 0 Mw := ; (w ) I − (fi,j ) (bi,j )T |Mw | = 6 0 in " F2 ⇐⇒ m Receiver w can decode. (Koetter et al. (2003) and Ho et al. (2006)) P := Olav Geil, Ryutaroh Matsumoto, Casper Thomsen[1em] Q w |Mw | = 6 0 in F2 m ? On Field Size and Success [1em]Probability Workshop in onNetwork GroebnerCoding bases and g Introduction Results Min. field size Improving bound Interpret |Mw | Results 1. Minimum field size of given characteristic. (Imply that finding the polynomial is NP-complete.) 2. Improving a bound for random network coding. 3. Topological interpretation of |Mw |. Olav Geil, Ryutaroh Matsumoto, Casper Thomsen[1em] On Field Size and Success [1em]Probability Workshop in onNetwork GroebnerCoding bases and g Introduction Results Min. field size Improving bound Interpret |Mw | Minimum field size of given characteristic Olav Geil, Ryutaroh Matsumoto, Casper Thomsen[1em] On Field Size and Success [1em]Probability Workshop in onNetwork GroebnerCoding bases and g Introduction Results Min. field size Improving bound Interpret |Mw | What Is known (w ) Choose ai,j ’s, fi,j ’s and bi,j ’s from a finite field. Field size ≥ no. of receivers (Koetter et al. (2003)) Olav Geil, Ryutaroh Matsumoto, Casper Thomsen[1em] On Field Size and Success [1em]Probability Workshop in onNetwork GroebnerCoding bases and g Introduction Results Min. field size Improving bound Interpret |Mw | • Utilizing the fact that for F (X1 , . . . , Xn ) ∈ Fq [X1 , . . . , Xn ] then there exists (x1 , . . . , xn ) ∈ Fnq such that F (x1 , . . . , xn ) 6= 0 if and only if F (X1 , . . . , Xn ) rem (X1q − X1 , . . . , Xnq − Xn ) 6= 0. • Reduce P modulo (w ) (w ) q ai,j − ai,j , . . . , fi,jq − fi,j , . . . , (bi,j )q − bi,j . (Fast!) Olav Geil, Ryutaroh Matsumoto, Casper Thomsen[1em] On Field Size and Success [1em]Probability Workshop in onNetwork GroebnerCoding bases and g Introduction Results Min. field size Improving bound Interpret |Mw | • Utilizing the fact that for F (X1 , . . . , Xn ) ∈ Fq [X1 , . . . , Xn ] then there exists (x1 , . . . , xn ) ∈ Fnq such that F (x1 , . . . , xn ) 6= 0 if and only if F (X1 , . . . , Xn ) rem (X1q − X1 , . . . , Xnq − Xn ) 6= 0. • Reduce P modulo (w ) (w ) q ai,j − ai,j , . . . , fi,jq − fi,j , . . . , (bi,j )q − bi,j . (Fast!) Olav Geil, Ryutaroh Matsumoto, Casper Thomsen[1em] On Field Size and Success [1em]Probability Workshop in onNetwork GroebnerCoding bases and g Introduction Results Min. field size Improving bound Interpret |Mw | • Utilizing the fact that for F (X1 , . . . , Xn ) ∈ Fq [X1 , . . . , Xn ] then there exists (x1 , . . . , xn ) ∈ Fnq such that F (x1 , . . . , xn ) 6= 0 if and only if F (X1 , . . . , Xn ) rem (X1q − X1 , . . . , Xnq − Xn ) 6= 0. • Reduce P modulo (w ) ) (w q q ai,j − ai,j , . . . , fi,jq − fi,j , . . . , (b i,j) − bi,j . (Fast!) Olav Geil, Ryutaroh Matsumoto, Casper Thomsen[1em] On Field Size and Success [1em]Probability Workshop in onNetwork GroebnerCoding bases and g Introduction Results Min. field size Improving bound Interpret |Mw | The Method • For characteristic p: If P rem p reduces to 0 modulo the ai,j ’s and fi,j ’s in Fp , then try Fp2 . Etc. • Max logp (no. receivers) trials. • Easy to find the ai,j ’s and fi,j ’s afterwards: F • q large enough. • F ∈ q (X1 , . . . , Xn−1 )[Xn ]. • Choose Xn = zn s.t. F is nonzero; possible because F degXn (F ) ≤ q − 1. • Find F (X1 , . . . , Xn−1 , zn ) ∈ • Continue. Fq [X1 , . . . , Xn−1 ]. • Quite fast. (Finding P is NP-complete.) Olav Geil, Ryutaroh Matsumoto, Casper Thomsen[1em] On Field Size and Success [1em]Probability Workshop in onNetwork GroebnerCoding bases and g Introduction Results Min. field size Improving bound Interpret |Mw | The Method • For characteristic p: If P rem p reduces to 0 modulo the ai,j ’s and fi,j ’s in Fp , then try Fp2 . Etc. • Max logp (no. receivers) trials. • Easy to find the ai,j ’s and fi,j ’s afterwards: F • q large enough. • F ∈ q (X1 , . . . , Xn−1 )[Xn ]. • Choose Xn = zn s.t. F is nonzero; possible because F degXn (F ) ≤ q − 1. • Find F (X1 , . . . , Xn−1 , zn ) ∈ • Continue. Fq [X1 , . . . , Xn−1 ]. • Quite fast. (Finding P is NP-complete.) Olav Geil, Ryutaroh Matsumoto, Casper Thomsen[1em] On Field Size and Success [1em]Probability Workshop in onNetwork GroebnerCoding bases and g Introduction Results Min. field size Improving bound Interpret |Mw | The Method • For characteristic p: If P rem p reduces to 0 modulo the ai,j ’s and fi,j ’s in Fp , then try Fp2 . Etc. • Max logp (no. receivers) trials. • Easy to find the ai,j ’s and fi,j ’s afterwards: F • q large enough. • F ∈ q (X1 , . . . , Xn−1 )[Xn ]. • Choose Xn = zn s.t. F is nonzero; possible because F degXn (F ) ≤ q − 1. • Find F (X1 , . . . , Xn−1 , zn ) ∈ • Continue. Fq [X1 , . . . , Xn−1 ]. • Quite fast. (Finding P is NP-complete.) Olav Geil, Ryutaroh Matsumoto, Casper Thomsen[1em] On Field Size and Success [1em]Probability Workshop in onNetwork GroebnerCoding bases and g Introduction Results Min. field size Improving bound Interpret |Mw | Improving a bound for random network coding Olav Geil, Ryutaroh Matsumoto, Casper Thomsen[1em] On Field Size and Success [1em]Probability Workshop in onNetwork GroebnerCoding bases and g Introduction Results Min. field size Improving bound Interpret |Mw | Introducing Randomized Network Coding Choose the ai,j ’s and fi,j ’s uniformly i.i.d. (w ) • . . . then hope that you can choose the bi,j ’s such that P is nonzero. • Success probability. Olav Geil, Ryutaroh Matsumoto, Casper Thomsen[1em] On Field Size and Success [1em]Probability Workshop in onNetwork GroebnerCoding bases and g Introduction Results Min. field size Improving bound Interpret |Mw | Introducing Randomized Network Coding Choose the ai,j ’s and fi,j ’s uniformly i.i.d. (w ) • . . . then hope that you can choose the bi,j ’s such that P is nonzero. • Success probability. Olav Geil, Ryutaroh Matsumoto, Casper Thomsen[1em] On Field Size and Success [1em]Probability Workshop in onNetwork GroebnerCoding bases and g Introduction Results Min. field size Improving bound Interpret |Mw | Introducing Randomized Network Coding Choose the ai,j ’s and fi,j ’s uniformly i.i.d. (w ) • . . . then hope that you can choose the bi,j ’s such that P is nonzero. • Success probability. Olav Geil, Ryutaroh Matsumoto, Casper Thomsen[1em] On Field Size and Success [1em]Probability Workshop in onNetwork GroebnerCoding bases and g Introduction Results Min. field size Improving bound Interpret |Mw | What Is Known q The field size. d The number of receivers. µ The number of randomly chosen variables. η The number of edges j where Y (j) depends on randomly chosen ai,j ’s and fi,j ’s. Success probability ≥ (q − d)η qη (Ho et al. (2006)) Olav Geil, Ryutaroh Matsumoto, Casper Thomsen[1em] On Field Size and Success [1em]Probability Workshop in onNetwork GroebnerCoding bases and g Introduction Results Min. field size Improving bound Interpret |Mw | What Is Known q The field size. d The number of receivers. µ The number of randomly chosen variables. η The number of edges j where Y (j) depends on randomly chosen ai,j ’s and fi,j ’s. Success probability ≥ (q − d)η qη (Ho et al. (2006)) Success probability ≥ Olav Geil, Ryutaroh Matsumoto, Casper Thomsen[1em] (q − 1)η qη On Field Size and Success [1em]Probability Workshop in onNetwork GroebnerCoding bases and g Introduction Results Min. field size Improving bound Interpret |Mw | What Is Known q The field size. d The number of receivers. µ The number of randomly chosen variables. η The number of edges j where Y (j) depends on randomly chosen ai,j ’s and fi,j ’s. Success probability ≥ (q − d)η qη (Ho et al. (2006)) ( ( η (q(−(1) (( ( Success (((( ≥ (probability ((( Olav Geil, Ryutaroh Matsumoto, Casper Thomsen[1em] qη On Field Size and Success [1em]Probability Workshop in onNetwork GroebnerCoding bases and g Introduction Results Min. field size Improving bound Interpret |Mw | Our bound Fq [X1 , . . . , Xµ ] the remainder of P modulo X1q − X1 , . . . , Xµq − Xµ . b = X j1 · · · Xµjµ . (Any monomial • Assume lm(P) 1 ordering.) b∈ • P Success probability ≥ since (q−j1 )···(q−jµ ) qµ ≥ Olav Geil, Ryutaroh Matsumoto, Casper Thomsen[1em] (q − j1 ) · · · (q − jµ ) qµ q−(j1 +···+jµ ) . q On Field Size and Success [1em]Probability Workshop in onNetwork GroebnerCoding bases and g Introduction Results Min. field size Improving bound Interpret |Mw | Our bound Fq [X1 , . . . , Xµ ] the remainder of P modulo X1q − X1 , . . . , Xµq − Xµ . b = X j1 · · · Xµjµ . (Any monomial • Assume lm(P) 1 ordering.) b∈ • P Success probability ≥ since (q−j1 )···(q−jµ ) qµ ≥ Olav Geil, Ryutaroh Matsumoto, Casper Thomsen[1em] (q − j1 ) · · · (q − jµ ) qµ q−(j1 +···+jµ ) . q On Field Size and Success [1em]Probability Workshop in onNetwork GroebnerCoding bases and g Introduction Results Min. field size Improving bound Interpret |Mw | Our bound Fq [X1 , . . . , Xµ ] the remainder of P modulo X1q − X1 , . . . , Xµq − Xµ . b = X j1 · · · Xµjµ . (Any monomial • Assume lm(P) 1 ordering.) b∈ • P Success probability ≥ since (q−j1 )···(q−jµ ) qµ ≥ Olav Geil, Ryutaroh Matsumoto, Casper Thomsen[1em] (q − j1 ) · · · (q − jµ ) (q − d)η ≥ qµ qη q−(j1 +···+jµ ) . q On Field Size and Success [1em]Probability Workshop in onNetwork GroebnerCoding bases and g Introduction Results Min. field size Improving bound Interpret |Mw | Improvement? u v1 w1 Olav Geil, Ryutaroh Matsumoto, Casper Thomsen[1em] v2 v3 v4 v5 v6 v6 v7 v8 w2 w3 On Field Size and Success [1em]Probability Workshop in onNetwork GroebnerCoding bases and g Introduction Results Min. field size Improving bound Interpret |Mw | Improvement? X (2) X (1) u X (3) v1 w1 Olav Geil, Ryutaroh Matsumoto, Casper Thomsen[1em] v2 v3 v4 v5 v6 v6 v7 v8 w2 w3 On Field Size and Success [1em]Probability Workshop in onNetwork GroebnerCoding bases and g Introduction Results Min. field size Improving bound Interpret |Mw | Improvement? X (2) X (1) u X (3) v1 w1 Olav Geil, Ryutaroh Matsumoto, Casper Thomsen[1em] v2 v3 v4 v5 v6 v6 v7 v8 w2 w3 On Field Size and Success [1em]Probability Workshop in onNetwork GroebnerCoding bases and g Introduction Results Min. field size Improving bound Interpret |Mw | Improvement? (contd) q Ptrue (q) Pnew (q) PHo (q) 2 0.039 0.610 · 10−4 0 4 0.252 0.133 0.156 · 10−1 8 0.521 0.392 0.244 16 0.768 0.636 0.536 32 ? 0.800 0.744 0.8 0.7 Field size 0.6 0.5 0.4 0.3 0.2 PTrue Pnew PHo 0.1 0 0 5 10 Olav Geil, Ryutaroh Matsumoto, Casper Thomsen[1em] 15 20 Success probability 25 30 35 On Field Size and Success [1em]Probability Workshop in onNetwork GroebnerCoding bases and g Introduction Results Min. field size Improving bound Interpret |Mw | Topological Interpretation of |Mw | Olav Geil, Ryutaroh Matsumoto, Casper Thomsen[1em] On Field Size and Success [1em]Probability Workshop in onNetwork GroebnerCoding bases and g Introduction Results Min. field size Improving bound Interpret |Mw | u v1 w1 v2 v3 v4 v5 v6 v6 v7 v8 w2 Olav Geil, Ryutaroh Matsumoto, Casper Thomsen[1em] w3 On Field Size and Success [1em]Probability Workshop in onNetwork GroebnerCoding bases and g Introduction Results Min. field size Improving bound Interpret |Mw | u 1 v1 5 2 7 4 6 16 w1 v4 13 3 v2 v3 10 9 8 11 v5 v6 14 15 12 v6 v7 v8 22 19 17 20 21 w 18 w2 3 Olav Geil, Ryutaroh Matsumoto, Casper Thomsen[1em] On Field Size and Success [1em]Probability Workshop in onNetwork GroebnerCoding bases and g Introduction Results Min. field size Improving bound Interpret |Mw | |Mw1 | = Q1 u 1 v1 5 2 7 4 6 16 w1 v4 13 3 v2 v3 10 9 8 11 v5 v6 14 15 12 v6 v7 v8 22 19 17 20 21 w 18 w2 3 Olav Geil, Ryutaroh Matsumoto, Casper Thomsen[1em] On Field Size and Success [1em]Probability Workshop in onNetwork GroebnerCoding bases and g Introduction Results Min. field size Improving bound Interpret |Mw | |Mw1 | = Q1 f1,6 u 1 v1 5 2 7 4 6 16 w1 v4 13 3 v2 v3 10 9 8 11 v5 v6 14 15 12 v6 v7 v8 22 19 17 20 21 w 18 w2 3 Olav Geil, Ryutaroh Matsumoto, Casper Thomsen[1em] On Field Size and Success [1em]Probability Workshop in onNetwork GroebnerCoding bases and g Introduction Results Min. field size Improving bound Interpret |Mw | |Mw1 | = Q1 f1,6 ·f2,7 f7,13 f13,16 u 1 v1 5 2 7 4 6 16 w1 v4 13 3 v2 v3 10 9 8 11 v5 v6 14 15 12 v6 v7 v8 22 19 17 20 21 w 18 w2 3 Olav Geil, Ryutaroh Matsumoto, Casper Thomsen[1em] On Field Size and Success [1em]Probability Workshop in onNetwork GroebnerCoding bases and g Introduction Results Min. field size Improving bound Interpret |Mw | u 1 v1 5 2 7 4 6 16 w1 v4 13 3 v2 v3 10 9 8 11 v5 v6 14 15 12 |Mw1 | = Q1 f1,6 ·f2,7 f7,13 f13,16 ·f3,10 f10,14 f14,18 v6 v7 v8 22 19 17 20 21 w 18 w2 3 Olav Geil, Ryutaroh Matsumoto, Casper Thomsen[1em] On Field Size and Success [1em]Probability Workshop in onNetwork GroebnerCoding bases and g Introduction Results Min. field size Improving bound Interpret |Mw | u 1 v1 5 2 7 4 6 16 w1 v4 13 3 v2 v3 10 9 8 11 v5 v6 14 15 12 |Mw1 | = Q1 f1,6 ·f2,7 f7,13 f13,16 ·f3,10 f10,14 f14,18 |Mw3 | = Q2 f1,5 f5,14 f14,21 ·f2,9 f9,15 f15,22 ·f3,12 v6 v7 v8 22 19 17 20 21 w 18 w2 3 Olav Geil, Ryutaroh Matsumoto, Casper Thomsen[1em] On Field Size and Success [1em]Probability Workshop in onNetwork GroebnerCoding bases and g Introduction Results Min. field size Improving bound Interpret |Mw | u 1 v1 5 2 7 4 6 16 w1 v4 13 3 v2 v3 10 9 8 11 v5 v6 14 15 12 |Mw1 | = Q1 f1,6 ·f2,7 f7,13 f13,16 ·f3,10 f10,14 f14,18 |Mw3 | = Q2 f1,5 f5,14 f14,21 ·f2,9 f9,15 f15,22 ·f3,12 |Mw2 | = Q3 v6 v7 v8 22 19 17 20 21 w 18 w2 3 Olav Geil, Ryutaroh Matsumoto, Casper Thomsen[1em] On Field Size and Success [1em]Probability Workshop in onNetwork GroebnerCoding bases and g Introduction Results Min. field size Improving bound Interpret |Mw | u 1 v1 5 2 7 4 6 16 w1 v4 13 3 v2 v3 10 9 8 11 v5 v6 14 15 12 v6 v7 v8 22 19 17 20 21 w 18 w2 3 Olav Geil, Ryutaroh Matsumoto, Casper Thomsen[1em] |Mw1 | = Q1 f1,6 ·f2,7 f7,13 f13,16 ·f3,10 f10,14 f14,18 |Mw3 | = Q2 f1,5 f5,14 f14,21 ·f2,9 f9,15 f15,22 ·f3,12 |Mw2 | = Q3 f1,4 f4,13 f13,17 On Field Size and Success [1em]Probability Workshop in onNetwork GroebnerCoding bases and g Introduction Results Min. field size Improving bound Interpret |Mw | u 1 v1 5 2 7 4 6 16 w1 v4 13 3 v2 v3 10 9 8 11 v5 v6 14 15 12 v6 v7 v8 22 19 17 20 21 w 18 w2 3 Olav Geil, Ryutaroh Matsumoto, Casper Thomsen[1em] |Mw1 | = Q1 f1,6 ·f2,7 f7,13 f13,16 ·f3,10 f10,14 f14,18 |Mw3 | = Q2 f1,5 f5,14 f14,21 ·f2,9 f9,15 f15,22 ·f3,12 |Mw2 | = Q3 f1,4 f4,13 f13,17 ·f2,8 f8,14 f14,19 On Field Size and Success [1em]Probability Workshop in onNetwork GroebnerCoding bases and g Introduction Results Min. field size Improving bound Interpret |Mw | u 1 v1 5 2 7 4 6 16 w1 v4 13 3 v2 v3 10 9 8 11 v5 v6 14 15 12 v6 v7 v8 22 19 17 20 21 w 18 w2 3 Olav Geil, Ryutaroh Matsumoto, Casper Thomsen[1em] |Mw1 | = Q1 f1,6 ·f2,7 f7,13 f13,16 ·f3,10 f10,14 f14,18 |Mw3 | = Q2 f1,5 f5,14 f14,21 ·f2,9 f9,15 f15,22 ·f3,12 |Mw2 | = Q3 f1,4 f4,13 f13,17 ·f2,8 f8,14 f14,19 ·f3,11 f11,15 f15,20 On Field Size and Success [1em]Probability Workshop in onNetwork GroebnerCoding bases and g Introduction Results Min. field size Improving bound Interpret |Mw | u 1 v1 5 2 7 4 6 16 w1 v4 13 3 v2 v3 10 9 8 11 v5 v6 14 15 12 v6 v7 v8 22 19 17 20 21 w 18 w2 3 Olav Geil, Ryutaroh Matsumoto, Casper Thomsen[1em] |Mw1 | = Q1 f1,6 ·f2,7 f7,13 f13,16 ·f3,10 f10,14 f14,18 |Mw3 | = Q2 f1,5 f5,14 f14,21 ·f2,9 f9,15 f15,22 ·f3,12 |Mw2 | = Q3 f1,4 f4,13 f13,17 ·f2,8 f8,14 f14,19 ·f3,11 f11,15 f15,20 +f1,5 f5,14 f14,19 On Field Size and Success [1em]Probability Workshop in onNetwork GroebnerCoding bases and g Introduction Results Min. field size Improving bound Interpret |Mw | u 1 v1 5 2 7 4 6 16 w1 v4 13 3 v2 v3 10 9 8 11 v5 v6 14 15 12 v6 v7 v8 22 19 17 20 21 w 18 w2 3 Olav Geil, Ryutaroh Matsumoto, Casper Thomsen[1em] |Mw1 | = Q1 f1,6 ·f2,7 f7,13 f13,16 ·f3,10 f10,14 f14,18 |Mw3 | = Q2 f1,5 f5,14 f14,21 ·f2,9 f9,15 f15,22 ·f3,12 |Mw2 | = Q3 f1,4 f4,13 f13,17 ·f2,8 f8,14 f14,19 ·f3,11 f11,15 f15,20 +f1,5 f5,14 f14,19 ·f2,7 f7,13 f13,17 On Field Size and Success [1em]Probability Workshop in onNetwork GroebnerCoding bases and g Introduction Results Min. field size Improving bound Interpret |Mw | u 1 v1 5 2 7 4 6 16 w1 v4 13 3 v2 v3 10 9 8 11 v5 v6 14 15 12 v6 v7 v8 22 19 17 20 21 w 18 w2 3 Olav Geil, Ryutaroh Matsumoto, Casper Thomsen[1em] |Mw1 | = Q1 f1,6 ·f2,7 f7,13 f13,16 ·f3,10 f10,14 f14,18 |Mw3 | = Q2 f1,5 f5,14 f14,21 ·f2,9 f9,15 f15,22 ·f3,12 |Mw2 | = Q3 f1,4 f4,13 f13,17 ·f2,8 f8,14 f14,19 ·f3,11 f11,15 f15,20 +f1,5 f5,14 f14,19 ·f2,7 f7,13 f13,17 ·f3,11 f11,15 f15,20 On Field Size and Success [1em]Probability Workshop in onNetwork GroebnerCoding bases and g Introduction Results Min. field size Improving bound Interpret |Mw | u 1 v1 5 2 7 4 6 16 w1 v4 13 3 v2 v3 10 9 8 11 v5 v6 14 15 12 v6 v7 v8 22 19 17 20 21 w 18 w2 3 Olav Geil, Ryutaroh Matsumoto, Casper Thomsen[1em] |Mw1 | = Q1 f1,6 ·f2,7 f7,13 f13,16 ·f3,10 f10,14 f14,18 |Mw3 | = Q2 f1,5 f5,14 f14,21 ·f2,9 f9,15 f15,22 ·f3,12 |Mw2 | = Q3 f1,4 f4,13 f13,17 ·f2,8 f8,14 f14,19 ·f3,11 f11,15 f15,20 +f1,5 f5,14 f14,19 ·f2,7 f7,13 f13,17 ·f3,11 f11,15 f15,20 +f1,4 f4,13 f13,17 ·f2,9 f9,15 f15,20 ·f3,10 f10,14 f14,19 On Field Size and Success [1em]Probability Workshop in onNetwork GroebnerCoding bases and g Introduction Results Min. field size Improving bound Interpret |Mw | u 1 v1 5 2 7 4 6 16 w1 v4 13 3 v2 v3 10 9 8 11 v5 v6 14 15 12 v6 v7 v8 22 19 17 20 21 w 18 w2 3 Olav Geil, Ryutaroh Matsumoto, Casper Thomsen[1em] |Mw1 | = Q1 f1,6 ·f2,7 f7,13 f13,16 ·f3,10 f10,14 f14,18 |Mw3 | = Q2 f1,5 f5,14 f14,21 ·f2,9 f9,15 f15,22 ·f3,12 |Mw2 | = Q3 f1,4 f4,13 f13,17 ·f2,8 f8,14 f14,19 ·f3,11 f11,15 f15,20 +f1,5 f5,14 f14,19 ·f2,7 f7,13 f13,17 ·f3,11 f11,15 f15,20 +f1,4 f4,13 f13,17 ·f2,9 f9,15 f15,20 ·f3,10 f10,14 f14,19 On Field Size and Success [1em]Probability Workshop in onNetwork GroebnerCoding bases and g Introduction Results Min. field size Improving bound Interpret |Mw | u 1 v1 5 2 7 4 6 16 w1 v4 13 3 v2 v3 10 9 8 11 v5 v6 14 15 12 v6 v7 v8 22 19 17 20 21 w 18 w2 3 Olav Geil, Ryutaroh Matsumoto, Casper Thomsen[1em] f1,6 |Mw1 | = Q1 f7,13 f13,16 · f2,7 f10,14 f14,18 · f3,10 |Mw3 | = Q2 f5,14 f14,21 f 1,5 f f9,15 f15,22 f2,9 · 3,12 · |Mw2 | = Q3 f4,13 f13,17 f 1,4 f8,14 f14,19 · f2,8 f11,15 f15,20 · f3,11 f5,14 f14,19 + f1,5 f7,13 f13,17 · f2,7 f11,15 f15,20 · f3,11 f4,13 f13,17 + f1,4 f9,15 f15,20 · f2,9 · f3,10 f10,14 f14,19 On Field Size and Success [1em]Probability Workshop in onNetwork GroebnerCoding bases and g Introduction Results Min. field size Improving bound Interpret |Mw | |Mw1 | = Q1 f7,13 ·f10,14 u 1 v1 5 2 7 4 v4 13 6 16 w1 3 |Mw3 | = Q2 f5,14 ·f9,15 v2 v3 10 9 8 11 v5 v6 14 15 12 |Mw2 | = Q3 f4,13 ·f8,14 ·f11,15 +f5,14 ·f7,13 ·f11,15 +f4,13 ·f9,15 ·f10,14 v6 v7 v8 22 19 17 20 21 w 18 w2 3 P = Q1 Q2 Q3 · f7,13 f10,14 · f5,14 f9,15 · (f4,13 f8,14 f11,15 + f5,14 f7,13 f11,15 + f4,13 f9,15 f10,14 ) Olav Geil, Ryutaroh Matsumoto, Casper Thomsen[1em] On Field Size and Success [1em]Probability Workshop in onNetwork GroebnerCoding bases and g Introduction Results Min. field size Improving bound Interpret |Mw | End Olav Geil, Ryutaroh Matsumoto, Casper Thomsen[1em] On Field Size and Success [1em]Probability Workshop in onNetwork GroebnerCoding bases and g Definitions and Theorems Theorem Given a network connection problem as outlined above where the min-cut from the source vertex u to each receiver wi is at least h, the number of sources processes. Then there exists a large enough finite field Fq in which inner vertices linearly combine the input symbols and send the linear combination to the out-edges such that each receiver wi receive information at a rate equal to h. Olav Geil, Ryutaroh Matsumoto, Casper Thomsen[1em] On Field Size and Success [1em]Probability Workshop in onNetwork GroebnerCoding bases and g Definitions and Theorems u Definition (min-cut) The min-cut from a vertex u to a vertex w in a directed graph is the least number of edges that can be removed from the graph such that there is no path from u to w. v1 v3 v4 w1 Olav Geil, Ryutaroh Matsumoto, Casper Thomsen[1em] v2 w2 On Field Size and Success [1em]Probability Workshop in onNetwork GroebnerCoding bases and g Definitions and Theorems Theorem Given a network connection problem as outlined above where the min-cut from the source vertex u to each receiver wi is at least h, the number of sources processes. Then there exists a large enough finite field Fq in which inner vertices linearly combine the input symbols and send the linear combination to the out-edges such that each receiver wi receive information at a rate equal to h. Olav Geil, Ryutaroh Matsumoto, Casper Thomsen[1em] On Field Size and Success [1em]Probability Workshop in onNetwork GroebnerCoding bases and g
© Copyright 2026 Paperzz