Solution : Problem I I. JK flip-flop next state table D flip-flop excitation table Q 0 0 1 1 Qnext 0 1 0 1 D 0 1 0 1 Excitation table D = JQ’ + K’Q Solution : Problem II The state table is derived as below : ( T 1 , T0 values also shown here, but they don’t form a part of the state table ) : 20 points Q1(t) 0 0 0 0 1 1 1 1 Q0(t) 0 0 1 1 0 0 1 1 X(t) Q1(t+1) 0 1 1 1 0 0 1 1 0 1 0 1 0 1 0 1 Q0(t+1) 0 1 0 1 1 0 1 1 y 0 1 1 1 0 1 0 1 T1 T0 0 1 1 1 1 1 0 0 0 1 1 0 1 0 0 0 Excitation Table for a T Flip Flop, PS 0 1 T 0 0 1 1 1 0 NS T0, T1 values , K-Maps and correct T1 and T0 expressions : 10 points K-Maps for T0 and T1 T0 Q1 Q0X 00 0 1 0 1 01 1 0 11 0 0 10 1 0 T1 Q1 0 1 Q0X 00 0 1 01 1 1 11 1 0 10 1 0 Implies T0 = Q1’Q0’X + Q1Q0’X’ + Q1’Q0 X’ T1 = Q1Q0’ + Q1’X + Q1’Q0 QED. Solution : Problem III 1. Tc ≥ Tpcq + Tpd + Tsetup Longest path: Tc ≥ Tpcq + 3*Tpd + Tsetup Tc ≥ 40 + 3*35 + 50 = 195 ps Max Frequency = 1/Tc = 5.12 GHz 2. Tccq + Tcd≥Thold + Tskew Shortest Path: Tccq + Tcd≥Thold + Tskew 30 + 25 ≥ 60 + Tskew Tskew≤ -5 Solution : Problem IV IV.1. IV.2. IV.3.
© Copyright 2026 Paperzz