MaximizingaMonotoneSubmodular FunctionSubjecttoaCoveringanda PackingConstraint JoachimSpoerhase UniversityofWroclaw,Poland [email protected] HighlightsofAlgorithms 10th June,2017 JointworkwithSumedhaUniyal Messagetothe Audience SubmodularFunctions DurationofyourPresentation(minutes) Messagetothe Audience SubmodularFunctions 5 DurationofyourPresentation(minutes) Messagetothe Audience SubmodularFunctions 5 10 DurationofyourPresentation(minutes) Messagetothe Audience SubmodularFunctions 5 10 20 DurationofyourPresentation(minutes) Messagetothe Audience SubmodularFunctions 5 10 20 DurationofyourPresentation(minutes) Capturesmanycombinatorialoptimizationproblemslike - Max-k-Coverage - Max-Cut - MaxFacilityLocationโฆ ๐ด ๐ ๐ต ๐ค Asetfunctiononallsubsetsof๐ฐ, ๐: 2|๐ฐ| โ โA suchthatโ๐ด โ ๐ต โ ๐ฐ, ๐ โ ๐ฐ\B, ๐ ๐ด โช ๐ โ ๐ ๐ด โฅ ๐ ๐ต โช ๐ โ ๐(๐ต) (Submodular) ๐(๐ต) โฅ ๐(๐ด) (Monotone) CoveringandPackingConstraints W=50k๏ผ 3 30k๏ผ 6 4 25k๏ผ 4 2 20k๏ผ 2 1 50k๏ผ 10 Foreachelemente โ ๐ฐ,wearegivesomeweightaprofitfunction๐: ๐ฐ โ โ,a weightfunction๐ค: ๐ฐ โ โ ,aprofitrequirement๐ andabudget๐ต. Feasibility NP-Hard Goal:max๐(๐จ) forsome๐ด โ ๐ฐ suchthat (Subset-Sum Problem) ๐(๐ด) โฅ ๐and๐ค(๐ด) โค ๐ Asetfunctiononallsubsetsof๐ฐ, ๐: 2|๐ฐ| โ โA suchthatโ๐ด โ ๐ต โ ๐ฐ, ๐ โ ๐ฐ\B, ๐ ๐ด โช ๐ โ ๐ ๐ด โฅ ๐ ๐ต โช ๐ โ ๐(๐ต) (Submodular) ๐(๐ต) โฅ ๐(๐ด) (Monotone) CoveringandPackingConstraints W=50k๏ผ 3 30k๏ผ 6 2 20k๏ผ 2 Foreachelemente โ ๐ฐ,wearegivesomeweightaprofitfunction๐: ๐ฐ โ โ,a weightfunction๐ค: ๐ฐ โ โ ,aprofitrequirement๐ andabudget๐ต. Feasibility NP-Hard Goal:max๐(๐จ) forsome๐ด โ ๐ฐ suchthat (Subset-Sum Problem) ๐(๐ด) โฅ ๐and๐ค(๐ด) โค ๐ Asetfunctiononallsubsetsof๐ฐ, ๐: 2|๐ฐ| โ โA suchthatโ๐ด โ ๐ต โ ๐ฐ, ๐ โ ๐ฐ\B, ๐ ๐ด โช ๐ โ ๐ ๐ด โฅ ๐ ๐ต โช ๐ โ ๐(๐ต) (Submodular) ๐(๐ต) โฅ ๐(๐ด) (Monotone) StateoftheArtResults โข MonotoneSubmodularMaximization โ UnderCardinalityConstraint โข Greedy1-1/eโ apx [Nemhauser etal.,Math.Program.โ78] โข Hardness:1-1/e [Nemhauser etal.,Math.O.R..,1978],[Feige,STOCโ96] โ UnderPackingConstraint โข Greedy1-1/eโ apx [Sviridenko,O.R.Lett.โ04] โ O(1)PackingConstraints โข Multilinearrelaxation:1-1/eโ ฮต โ apx [Kulik etal.,SODAโ09] โ MatroidConstraints โข Multilinearrelaxation:0.309โ apx [Vondrák,STOCโ08],[Calinescu etal.,IPCOโ07] โข Capacitatedkโ MedianProblem โ Hardness:1.736 (followsfromtheuncapacitated case) โ Approximationfactor:O(logn)[Folklore] โ O(1)approximationalgorithmsundercapacity/cardinalityviolations. 9 Algorithms โข Agreedybaseddynamicprogram. โข Outputsanapproximatesolution whichisbestofallpossiblegreedy Wโ chains. Greedy chain may get stuck Pโ Bestgreedy chain Weights/profits as in optimum solution Tableentry:๐[๐, ๐โฒ, ๐โฒ] stores๐-elementapproximatesolutionwith profit๐โฒandweight๐โฒ. Tocompute๐[๐, ๐โฒ, ๐โฒ] pickbestwaytoextendanentry ๐[๐ โ 1, ๐โฒโฒ, ๐โฒโฒ] byoneelementinafeasiblemanner. โ โฆ Output:Bestentry๐[๐, ๐โฒ, ๐โฒ]with๐ โฅ โก and๐โ โค ๐. 10 Algorithms โข Agreedybaseddynamicprogram. โข Outputsanapproximatesolution whichisbestofallpossiblegreedy chains. ForbiddenSets Crucialtoreducetheprofitviolationfrom2 + ๐ downto 1 + ๐. Worksforonecoveringandonepackingconstraint. Idea:Foreach๐[๐โฒ, ๐โฒ],forbidthesuffixset๐นโนโฆ oforderedsetbynonล(โข) increasingลฝ(โข) suchthat p(๐ ๐โฆ , ๐ โฆ โช ๐นโนโฆ ) โฅ ๐ andw(๐ ๐ โฆ , ๐ โฆ โช ๐นโนโฆ ) โค ๐. Tableentry:๐[๐, ๐โฒ, ๐โฒ] stores๐-elementapproximatesolutionwith profit๐โฒandweight๐โฒ. Tocompute๐[๐, ๐โฒ, ๐โฒ] pickbestwaytoextendanentry ๐[๐ โ 1, ๐โฒโฒ, ๐โฒโฒ] byoneelementinafeasiblemanner. โ โฆ Output:Bestentry๐[๐, ๐โฒ, ๐โฒ]with๐ โฅ โก and๐โ โค ๐. 11 MainTheorems Theorem1.Thereisanalgorithmformaximizingamonotonesubmodular functionsubjecttoO(1)coveringandonepackingconstraintthatoutputsfor any๐บ > ๐in๐๐ถ(๐/๐บ) timea4-approximatesolutionwithprofitatleast ๐ โ ๐บ ๐ทandwithweightatmost ๐ + ๐บ ๐พ. ๐ Theorem2.Thereisanalgorithmformaximizingamonotonesubmodular functionsubjecttoonecoveringandonepackingconstraintthatoutputsforany ๐บ > ๐in๐๐ถ(๐/๐บ) timea4-approximatesolutionwithprofitatleast ๐ โ ๐บ ๐ทand withweightatmost ๐ + ๐บ ๐พ. Corollary.Thereisa2.6- approximationalgorithmfork-medianproblemwith non-uniformandhardcapacitiesiftheunderlyingmetricspacehasonlytwo possibledistances. 12 Factor-revealingLP ๐ฆ๐ข๐ง ๐๐ ๐ ๐ข๐๐๐๐๐ก๐ก๐ (LP) ๐ฆ๐๐ฑ โ๐ ๐ ๐ ๐ ๐ข๐๐๐๐๐ก๐ก๐ ๐¯๐ ๐ ๐ ๐ ๐¥ โฅ 1 โ ๐¥ ; ๐ (DUAL) ๐ฅ© + ๐ฆ© โ ๐ฅ©A¥ โค 0โ๐ โ ๐ โ 1 ; ๐ ๐© โฅ ๐©ª¥ + 1 โ ๐© โ๐ โ ๐ \{1}; ๐ ๐ฅ· + ๐ฆ· โค 1; © ๐ ๐© โฅ 1 โ - ๐® โ๐ โ ๐ ; ๐ ®¯¥ โ·®¯© ๐ฆ® โ 1 โ ๐ฅ© โค 0โ๐ โ ๐ ; · · ๐© โฅ 0,๐© โฅ 0โ๐ โ ๐ . ๐ฅ© โฅ 0,๐ฆ© โฅ 0โ๐ โ ๐ . ® © Theorem3.Thereisanalgorithmformaximizingamonotonesubmodular functionsubjecttoO(1)coveringandonepackingconstraintthatoutputsfor any๐บ > ๐in๐๐ถ(๐/๐บ) timeae-approximatesolutionwithprofitatleast ๐ โ ๐บ ๐ทandwithweightatmost ๐ + ๐บ ๐พ. ๐ 13 OpenProblems โข Canwegetatight1 โ 1/๐ approximationfor1 cardinalityand1 coveringconstraintwithoutanyviolationortheproblembecomes harder? โข Canwegeta๐(1)approximationfor1 coveringand1 packing constraintbyviolatingonlyoneconstraint? โข WhichotherproblemscanbenefitfromourgreedyDPtechnique? 14 Thankyou
© Copyright 2026 Paperzz