The Profit Maximizing Cutoff in Observable Queues with State

The Profit Maximizing Cutoff in Observable Queues with State Dependent Pricing
Christian Borgs (MSR-NE) Jennifer T. Chayes (MSR-NE)
Sherwin Doroudi (CMU-Tepper) Mor Harchol-Balter (CMU-CS) Kuang Xu (MIT-LIDS)
Support provided by Microsoft Computational Thinking grant
1. Background & Motivation
4. Problem Statement & Approach
CHARGE ENTRY PRICE
OBSERVABLE
QUEUE
Hmm…
should
I join?
DELAY
SENSITIVE
CUSTOMERS
w/ LIMITED
BUDGET
ο‚‘
INPUTS: fixed πœ† and 𝑉
ο‚‘
OBJECTIVE: Find cutoff π‘˜ βˆ— to maximize the
earning rate 𝑅(π‘˜, πœ†, 𝑉)
ο‚‘
TECHNIQUE: use a β€œdiscrete derivative”
ο‚§ Define Ξ”π‘₯ 𝑓 π‘₯ ≑ 𝑓 π‘₯ + 1 βˆ’ 𝑓 π‘₯
ο‚§ Ξ”π‘₯ is the forward difference operator
ο‚§ Solve Ξ”π‘˜ [𝑅 π‘˜, πœ†, 𝑉 ] = 0 for π‘˜ ∈ 𝐑
ο‚§ Obtain optimal cutoff π‘˜ βˆ— = βŒˆπ‘˜βŒ‰
CLOUD COMPUTING SERVICE
GOAL: Choose prices and admissions
policy to maximize profits
2. The Queueing Model
ο‚‘
𝑀/𝑀/1 queue
ο‚‘
πœ†β†’
ο‚‘
πœ‡=1
WLOG
ο‚‘
5. The Analysis
ο‚‘
ln(πœ†) 𝐺 πœ†, 𝑉 βˆ’ π‘˜ 𝑒 ln
All customers are identical with parameters:
𝑉
𝑣=1
Value for receiving service
Waiting cost per unit time
Solve: 𝑅 π‘˜ + 1, πœ†, 𝑉 βˆ’ 𝑅 π‘˜, πœ†, 𝑉 = 0
1
Define: π‘˜ ≑ π‘˜ + 2 and 𝐺 πœ†, 𝑉 ≑ 1 βˆ’ πœ† 𝑉 +
1βˆ’πœ†
Question: How do we solve this for π‘˜?
ο‚‘
ο‚‘
(𝑛 + 1) + 𝑝 ≀ 𝑉
Now solve: π‘₯𝑒 π‘₯ = 𝐢 for π‘₯
Answer: Lambert π‘Š (product log) function
π‘Š π‘₯ 𝑒
𝑛 : # of customers in (state of) system
ln(πœ†)πœ†πΊ(𝑉,πœ†)
=
1βˆ’πœ†
Call both of
these π‘₯
𝑝: price customers must pay
I wait only if:
πœ† 𝐺 πœ†,𝑉 βˆ’π‘˜
3. How to Price?
π‘Š(π‘₯)
=π‘₯
Or equivalently

π‘Š π‘₯𝑒 π‘₯ = π‘₯
6. Conclusions
Charge as much as customers are willing to pay in each state:
𝑝 𝑛 = 𝑉 βˆ’ (𝑛 + 1)
𝝀
0
𝝀
𝝀
1
𝝀
= ceil
𝝀
1
1
ln πœ† β‹… πœ†
1βˆ’πœ† 𝑉+
βˆ’
β‹…π‘Š
1 βˆ’ πœ† ln πœ†
1βˆ’πœ†
π‘˜
π‘˜βˆ’1
$𝑉 βˆ’ 1 𝟏 $𝑉 βˆ’ 2 𝟏
1βˆ’πœ† 𝑉+
π‘˜βˆ—
Cutoff at π‘˜
𝟏 $𝑉 βˆ’ π‘˜ βˆ’ 2 𝟏 $𝑉 βˆ’ π‘˜ βˆ’ 1𝟏
So what can the closed form do for us?
But… we use an explicit early cutoff at state π‘˜.
Why?
Asymptotic Results
For fixed πœ† < 1, as 𝑉 β†’ ∞: π‘˜ βˆ— ∼ 1 βˆ’ πœ† 𝑉
Answer: Cutoff  shorter queue  high prices more often
When πœ† = 1, as 𝑉 β†’ ∞: π‘˜ βˆ— ∼ 2𝑉
So how much do we make?
Probability:
(π‘˜)
πœ‹0
0
Price charged:
𝝀
(π‘˜)
πœ‹1
𝝀
𝝀
1
(π‘˜)
πœ‹π‘˜βˆ’1
$𝑉 βˆ’ 1 𝟏 $𝑉 βˆ’ 2 𝟏
For fixed πœ† > 1, as 𝑉 β†’ ∞: π‘˜ βˆ— ∼ log πœ† ( 𝑉)
𝝀
π‘˜
π‘˜βˆ’1
𝟏 $𝑉 βˆ’ π‘˜ βˆ’ 2 𝟏
Earning rate = (arrival rate) x (average price charged)
Is the cutoff of practical use?
When πœ† > 1: high cutoff  huge losses!
π‘˜βˆ’1
(π‘˜)
πœ‹π‘› : Probability that a new arrival
sees state 𝑛, given a cutoff of π‘˜
πœ†
1
𝑅(π‘˜, πœ†, 𝑉) =
β‹…
π‘˜+1
1βˆ’πœ†
1βˆ’πœ†
π‘˜βˆ— = 7
β‹… 𝑝(𝑛)}
𝑝 𝑛 = 𝑉 βˆ’ (𝑛 + 1)
1 βˆ’ πœ†π‘˜ 1 βˆ’ πœ† 𝑉 + πœ†π‘˜ 1 + π‘˜ βˆ’ π‘˜πœ† βˆ’ 1
Earning Rate
𝑅 π‘˜, πœ†, 𝑉 = πœ† β‹…
(π‘˜)
{πœ‹π‘›
𝑛=0
Call this
constant 𝐢
πœ† = 1.2
𝑉 = 50
π‘˜
1
1βˆ’πœ†
βˆ’2