High temperature superconductors and Mott insulators far from equilibrium conditions L. Perfetti, Laboratoire des Solides Irradiés High temperature superconductors Optimally doped Bi2Sr2CaCu2O8+δ superconductor below 90 K Zailan Zhang Cristian Piovera T* T crossover To 100 AF 0 Fluctuations Tc SC 0.15 doping Macroscopic quantum matter due to finite pairing amplitude Meissner Effect, zero resistance, single particle gap Linear susceptibilities follow to a single temperature scale Tc Paraconductivity Fluctuations above Tc long range order below Tc OP Bi2Sr2CaCu2O8+δ Y. Wang, Phys. Rev. Lett. 95, 247002 (2005) F. Rullier-Albenque, Phys. Rev. B 84, 014522 (2011) Diamagnetism Doping Strongly driven superconductors: pump with 1.5 photons Are some superconducting correlations more robust than others? • Supercurrents, Tr-THz • single particle gap, Tr-ARPES • Scattering of low energy excitations, Tr-ARPES Multiple energy scales Gap (meV) d-wave pairing in reciprocal space Angle ° disorder in direct space THz measurements of superfluid density R. Kaindl, Phys. Rev. B 72, 060510 (2005) M. A. Carnahan, Physica C 408, 709 (2004) The superconducing gap in the photoexcited state C. L. Smallwood, Science 336, 1137 (2012) C. L. Smallwood, Phys. Rev. B 89, 155126 (2014) Gap (meV) FEMTOARPES Angle ° EDCs at KF above Tc Opening of superconducting gap ∆ = 20 meV by lowering the temperature below Tc Simmetrized EDCs at KF below Tc EDCs at KF below Tc Photoexcitation and thermal fluctuations are comparable Gap Collapse as a function of fluence Dynamics of the superconducting gap φ =23° Wavevector (1/nm) 3 ps The superconducting gap is more robust towards the antinodes Gap (meV) Supercurrents and near nodal gap follow similar behaviour 40 µJ/cm2 30 µJ/cm2 Angle ° Scattering of low energy excitations, Tr-ARPES C. Piovera Phys Rev B 91, 224509 (2015) Below Tc the dissipation of low energy quasiparticles is blocked Persistence of superconducting correlations up to high fluence Fast dissipation channel appears at 60 µJ/cm2 and saturates at roughly 200 µJ/cm2 Dissipation of low energy electrons in the nodal direction S. L. Yang, Phys. Rev. Lett. 114, 24 7001 (2015) Fluence and momentum dependence of the gap collape related to the uncoventional pairing in high temperature superconductors Gap (meV) d-wave Angle ° Analogy to high magnetic fields G. Grissonnanque, Nature Comm. 5, 3280 (2014) Reduction of superfluid density in the mixed phase R. Mallozzi, Phys. Rev. Lett. 81, 1485 (1998) Quenched disorder implies local variations of paring amplitudes Non-homogeous break-down of rigidity upon photoexcitation Randomization of condensate phase Sr2IrO4 Mott insulator with large spin-orbit coupling Quasi two dimensional structure Cristian Piovera Veronique Brouet C. Piovera, Phys. Rev. B 93, 241114(R) (2016) V. Brouet, Phys Rev B 92, 081117(R) (2015) Magnetic transition at 245 Kelvin, strong antiferromagnetic fluctuations above the Neel temperature Analogies with cuprates: superconductivity in doped compounds? Electronic properties of Sr2IrO4 B. J. Kim, Phys. Rev. Lett. 101, 076402 (2008) Dispersion of electronic states Jeff = 1/2 and Jeff = 3/2 clearly identified Mott gap Large dispersion due to antiferromantic correlations V. Brouet, Phys Rev B 92, 081117(R) (2015) Doping with acceptors and donors B. H. Kim, Phys. Rev. Lett. 109, 167205 (2012) Photoinduced mid-gap states Doublons-holons pairs are unstable Similar to cuprates H. Okamoto, Phys .Rev. B 83, 125102 (2011) Nd2CuO4 Sudden relaxation of electrons above the chemical potential Two steps dynamics of midgap states Delays (fs) No doping dependence C. Piovera, Phys. Rev. B 93, 241114(R) (2016) Possible mechanisms of ulltrafast relaxation Oxygen inhomogenities leading to local gap collapse Y. Okada, Nature mat. 12, 707 (2013) Conclusions •Hierarchy of superconducting correlations out of equilibrium: phase coherence, superconducting gap, quasiparticle scattering Superconducting correlations persisting to high pumping fluence • Instability of doublon-holons pairs in Strontium Iridate: Sudden generation and ultrafast decay of mid-gap states: Possible role of Oxygen inhomogeinity and strong coupling to collective excitations. Collaborators C. Piovera Laboratoire des Solides Irradiés, Ecole Polytechnique Z. Zhang, M. d’Astuto UPMC, Université Paris 6 V. Brouet, E. Papalazarou, M. Marsi, H. Raffy Laboratoire de Physique des Solides, Université Paris-Sud Temperature dependence of the speudogap in Bi-2201 N. Hashimoto Nature Phys. (2014) Temperature (K) Bi-2201 shows the fast decay even at low temperature Blocking of optical phonon emission is not due to the speudogap
© Copyright 2026 Paperzz