Decoherence of a qubit: -during free evolution -during driven evolution -at readout The Quantronium dc gate 1 dc gate 0 A0 µw n01 0 qp trap readout junction 1A1 box Fluctuating environment A -meter 1µm AC drive UM Daniel ESTEVE QUAN ELEC RONICS GROUP T SPEC of Michel DEVORET YALE DECOHERENCE DURING FREE EVOLUTION qubit relaxation dephasing 1 AZ X 2 1 / 2 dX (t ) noise dw01 (t ) DEPHASING dj (t) = т w01 (t ')dt' The quantronium: 1) a split Cooper pair box 2 knobs : Ng CgU/2e U δ = /0 1 d° of freedom ˆ i θ̂,N 2 energies: 2e EC 2Cisland 2 EJ = h 8e 2R t ˆ E (N ˆ - N )2 - E cos cosˆ H C g J 2 δ N U i State dependent persistent currents ˆ 1 H 1 Ek î 0 0 2) protected from dephasing ¶ n 01 = 0 ¶X EJ EC 0.5 15 0.25 1 0 0 -0.25 hn01 n01(GHz) energy (kBK) 20 10 5 01 - €€€€€ 2 1 - €€€€€ 2 0 0 /2p 1 1 €€€€€ 2 readout + environment 0 1 €€€€€ 2 /2p 1 1 €€€€€ 2 0 Ng dX (t ) ¶ n01 dn01(t ) = dX (t ) ¶X weaker dephasing at optimal point 1 2 €€€€€ Ng EJ=0.86 kBK EC=0.68 kBK Readout of persistent currents with dc switching 3) with a readout junction V=0 or V0 20 t 15 10 Ib I0 5 01 - €€€€€ 2 U 0 1 2 €€€€€ Ng 1000 100 800 80 600 60 400 40 200 20 output voltage (µV) 0 bias current (nA) 1 €€€€€ 2 RF amplitude (a.u.) /2p 1 1: switching 0: no switching 1 0 0 1 2 3 time (µs) 4 5 6 0 discrimination microwave output voltage (mV) Qubit control: Rabi precession 100 Aμw cos(t ) 50 0 16 GHz -50 1.0 2.0 3.0 switching probability (%) 4.0 time (ns) 0 Rabi oscillations 50 40 X Y 1 nµw Effective field rotation Rabi aURF 30 0 50 100 150 200 250 pulse duration (ns) Readout fidelity ? switching probability (% ) 100 Magic point N g = 1/2 80 60 p pulse ground state 40 difference 20 0 510 515 520 525 530 535 bias current amplitude (nA) 40% contrast (only) 540 Qubit arbitrary transformations manipulation dn 01 U R3 X R2Y R1X t adiabatic frequency pulses for Z rotations Z 0 Y X 1 robust transformations Composite ‘ p ’ CORPSE : 60°X 300°-X 420 X° switching probability (% ) 60 50 ‘ p ’ CORPSE 40 30 16.30 corpse: 420°(X)/300°(-X)/60°(X) Single simple p pulse pulse nRabi=92 MHz sweet spot 16.35 16.40 16.45 frequency (GHz) 16.50 Decoherence sources in the quantronium circuit e_ ˆ = E (N ˆ - N )2 - E cos /2 cosˆ H C g J B Vg 0 ˆI 1 1 ˆ 1 0 0N 0 2 4 0.2 0.8 0.6 0.4 optimal point Ng=1/2 , =0 20 6 n 01/ = 0 15 10 7.5 5 nA 2.5 0 0 n 01/Ng = 0 Ng minimum relaxation due to no dephasing no current n01(GHz) Ng drive 10 5 01 - €€€€€ 2 0 /2p 1 1 2 €€€€€ 0 1 €€€€€ 2 Ng Decoherence in the Quantronium e_ 01 (Ng , ) a 1 B U 0 environment + b ˆ = E (N ˆ - N )2 - E cos /2 cosˆ H C g J Pure dephasing i dt a 0 e 01 1 Relaxation 2 P 2 2 1 ˆ = 0 N 1 SNg (01 ) p T1 2 0 ˆi 1 S (01 ) dj (t) = +т e 0 ˆi 1 0 if balanced junction ! i dj т 0 ¶ w01 dl (t)dt ¶l 1 ¶ 2 w01 2 dl (t)dt 2 ¶l 2 t2 2 wt = exp[s т Sl n ( w) sinc2 ( )dw] 2 2 not necessarily exponential e i dj (Tj ) = e - 1 1 S ( 0) T Model for dephasing: charge and phase noise e_ ˆ = E (N ˆ - N )2 - E cos cosˆ H C g J 2 Vg Ng ou (linear coupling) Ramsey Echo B (t ) t 2 S ( ) sin c 2 ( t 2 )d 1 t t (t ) t 2 S ( ) [1 cos( )]sin c 2 ( ) d 2 2 4 Spectral density Relaxation of the Quantronium n 01 (GHz) 13.81 15.76 16.41 GHz 16.66 switching probability (%) 2.0 =0 Ng = 1/2 T1 (µs) 1.5 1.0 p 60 t 50 P0 40 30 T1=0.5µs 0 1 t (µs) 0.5 0.0 1 Nmodes (n 01 ) T1 -0.2 |/2p| -0.1 0.0 |Ng-1/2| 0.1 T1: 0.3-2 ms 2 Ramsey interferences 0 Rabi 01RF p/2 pulse Rabi Free evolution (rotation also) Projection Z p/2 pulse AZ X Ramsey interferences reveal decoherence of free evolution during the delay readout Characterizing dephasing: 1) decay of Ramsey fringes best ones: switching switching probability probability (%) (%) 45 45 nRF = 16409.50 MHz t t / T sin(2p . Fit e n = 19.84 MHz T2 = 500 +/- 50 ns 40 40 n . t) 35 35 30 30 0.0 0.0 0.1 0.1 0.2 0.2 0.3 0.3 0.4 0.4 time between pulses t (µs) time between pulses t (µs) 0.5 0.5 0.6 0.6 typical sample Fit with the linked cluster expansion: ( Makhlin Shnirman, Paladino, Falci) static approximation switching probability p 0.6 =0 Ng = 1/2 0.4 T2 ~ 300 ns 0.2 0 200 400 600 delay t between p/2 pulses (ns) Comparing fits “static” approximation ( Makhlin Shnirman, Paladino, Falci) Simple exponential gaussian noise model 500 ns Coherence time n 01 0 Ng 0 Ng N 1/ 2 g 1,2 n 01 0 20 15 10 0,8 5 01 - €€€€€ 2 0 /2p 1 1 €€€€€ 2 0 0,4 1 €€€€€ 2 Pswitch n01(GHz) away from optimal point Nc N 0.53 0,0 g 0.028 0.028 0.028 -0,4 0 200 time delay (ns) 400 0 200 400 time delay (ns) Characterizing dephasing: 2a) phase detuning pulses 50 p/2X t1 p/2X switching probability (%) 40 T2 ~ 200 ns 30 20 0 100 200 300 time t1 (ns) 400 500 /2p=6.3% 45 p/2X p/2X t1=270 ns T2, ~ 60 ns 40 100 200 time t2 (ns) 300 t2 Characterizing decoherence: 3) resonance linewidth switching prob (%) switching prob (%) 20 25 20 25 30 35 16.8 16 14 16.6 12 16.5 16.4 10 f / f0 = 0 Ng = 1/2 -0.3 -0.2 / 2p -0.1 0.0 0.5 0.4 Ng 16.3 Frequency (GHz) Frequency (GHz) 16.7 Microwave output voltage (mV) switching probability (%) 5) Probing the dynamics: spin echo experiments Ramsey Echo 50.5MHz 60 50 50 0 -50 p p/2 0.0 2.0 4.0 6.0 p/2 8.0 10.0 12.0 14.0 16.0 18.0 20.0 time (ns) 40 30 0 200 400 600 delay between p/2 pulses (ns) 800 1000 Direct mapping of echo amplitude 50 switching probability (%) 60 T2 ~ 220 +/- 50 ns p/2 40 p p/2 30 50 0 500 1000 p/2 p/2 40 30 p/2 TEcho ~ 500 +/- 50 ns 0 500 1000 time between p/2 pulses (ns) TE T2 1500 low frequency noise p p/2 Echo decay away from optimal point =0 0.4 Ng = 0.500 Ng = 1/2 switching probability p 0.5 0.4 0.3 0.2 0 500 0.3 1000 1500 0.4 / 2p = 0.023 0 500 0.484 1000 0 0.4 0.3 0.2 500 0.3 1000 1500 0.4 0.079 0 100 200 0.452 300 0 500 1000 1500 0.3 0.435 0.164 0.2 0 50 100 0 500 1000 1500 0.419 0.248 0 50 100 0.4 0.3 0.3 0.2 0.3 0.4 0.3 0 500 1000 1500 delay t between p/2 pulses (ns) Comparison exp vs model Coherence times (ns) 500 noise spectral densities Spin echo Free decay 500 S 100 Gaussian model SNg 100 1/ 1/ 0.5MHz 4MHz 10 10 -0.3 -0.2 -0.1 0.0 |/2p| Conclusion: decay times ok, not time dependence 0.05 0.10 |Ng-1/2| non gaussian character of noise ?? See G. Ithier et al.: Decoherence in a quantum bit Superconducting circuit circuit, preprint Closer look at charge and phase spectral densities: Ng Vg Phase noise Charge noise 4 1x10 3 [S()] 1x10 2 1x10 Partly external 1x10 0 1x10 -1 1x10 -2 1x10 1/f Ng 1 -3 1x10 1/f -4 1x10 -5 1x10 -6 1x10 -7 1x10 -8 -3 10 -2 10 -1 10 0 10 1 10 2 10 3 10 4 10 5 10 6 10 [] (Hz) 1x10 7 -3 -2 -1 0 1 2 3 4 5 6 7 10 10 10 10 10 10 10 10 10 10 10 10 [] (Hz) Cut-off at .5 MHz Decoherence: driven evolution versus free evolution Bloch-Redfield description 1 Free 1 2 2 1 S (01 ) S z ( 0) Driven at Rabi 1 cos 2 sin 2 1 n 2 2 2 2 3 cos sin *2 1 cos 2 n 4 2 * 1 n S z ( Rabi ) See preprint on decoherence G. Ithier et al. Determination of T*1 : Spin locking p/2X switching probability (%) 55 p/2X p/2X - LockY 24 MHz - p/2X T*1 ~ 600 ns 50 p/2X Ramsey 7MHz T2 ~ 250 ns aY p/2X 45 40 35 p/2X - LockY 24 MHz - 3p/2X T*1 ~ 600 ns 30 0 500 1000 1500 delay between p/2 pulses (ns) T T1 * 1 1 n 2 * 1 Determination of T*2 : Decay of Rabi oscillations with Rabi frequency 0.6 nR0 = 2.2 MHz 4.0 MHz 7.8 MHz 15 MHz 30 MHz 61 MHz 0.5 0.4 switching probability p 0.3 0.2 0.6 0.5 0.4 0.3 0.2 0.6 0.5 0.4 0.3 0.2 0 500 1000 0 500 pulse length (ns) 1000 Decay of Rabi oscillations with frequency 3 cos 2 sin 2 2 2 1 cos n 4 2 * Tn (1-100MHz) 1µs 1000 1000 nRabi 0 = 15.4 MHz 800 600 600 400 400 T*2 ~ 480 ns 200 0 200 1 10 100 Rabi frequency (MHz) 0 T2 T2 * 20 n (MHz) 40 0 T*2 (ns) T*2 (ns) 800 T2 decoherence in the rotating frame ? a 0 1 0 Y X 55 switching probability (% ) lab frame: Z Ramsey decay: 50 45 40 35 T = 300 +/- 30 ns detuning=50MHz 30 T2=300ns 25 1 0 200 rotating frame: a 0* 1* Z I1*> *> I0 drive switching probability p 0.6 400 600 800 Delay between p/2 pulses (ns) 0.5 0.4 0.3 T2*=480 ns 0.2 0 200 400 600 800 pulse length (ns) Conclusion: more robust qubit encoding in the rotating frame 1000 1200 Decoherence at readout: projection fidelity ? ideal QND readout: 1 1 0 0 Readout: 1 Readout: 0 errors: wrong answer + projection error 1 0 0 A0 1A1 A -meter Fluctuating environment Decoherence :dc versus rf readout t dc readout V t U dc pulse switching simple, but: rep rate limited by quasiparticles -qubit reset : NOT QND resets the qubit Decoherence :dc versus rf readout PULSE IN rf readout (M. Devoret, Yale) PULSE OUT t U U dc pulse switching “RF” pulse dynamics in anharmonic potential simple, but: more complex, but: -fidelity 40% -qubit reset : NOT QND -better fidelity ? -no reset: possibly QND Phase oscillations in a state dependent anharmonic potential (I. Siddiqi et al., PRL 93, 207002 (2004)) Drive Qubit control port I0 g Ui C V Ur Vg Output LC oscillator GUr The Josephson Bifurcation Amplifier : 0 OSCILLATION AMPLITUDE 1 latching 180° 0 1 1 -180° 0 MICROWAVE DRIVE AMPLITUDE 1.5 Frequency (GHz) Microwave readout setup MicroWave Generator V RFin LO demodulator S 300 K M G=40dB Pulsing I Q TN=2.5K G=40dB -20dB 4K -20dB -30dB LP 3.3GHz 600 mK -30dB 4 kW 1 kW 20 mK HP LP Directionnal 1.3GHz 2GHz coupler Sample from Yale 50 W 50 W frequency: 1.4GHz Rabi oscillations 5ns Readout contrast? 100ns tin>150ns Bifurcation probability 1.0 1 0.8 P 0.7 0.6 0.6 0.5 0.4 0.4 0.3 0.2 0.2 0 0.1 0 20 40 60 80 100 120 140 160 Pulse duration (ns) 0.0 -7.0 -6.8 -6.6 -6.4 -6.2 -6.0 Microwave power (dBm, top) Readout : 50% contrast (Yale: 60%) (best dc switching: 60%) QND readout ? no pulse OR p pulse on qubit on qubit Readout 1 Readout 1 Readout 2 1 0 analysis yields for a single readout: 1 1 p 0.34 p 0 0 p 1 1 0.25 0.09 Answer 1 Answer 0 p 0.66 0 0.17 0.83 Answer 1 Answer 0 partially QND 0 0.30 Answer 1 0.36 Answer 0 (Yale & Saclay) QND readout with an ac drive at optimal point ? flux qubit charge qubit quantronium Ek Ik Ek Qk N g Ek Ik SQUID inductance 2 Ek Lk 2 box capacitance 1 TU Delft, Helsinki (for SSET) 2 Ek Ck N 2 g (in progress) Chalmers 1 JBA 2 Ek Lk 2 1 Yale partially Saclay QND Readout fidelity & QND readout are (still) issues This work on : the Quantronium dc gate 1 dc gate 0 A0 µw n01 0 qp trap 1A1 box Fluctuating environment A -meter readout junction 1µm QUAN ELEC UM TRONICS GROUP SPEC Appl. Physics YALE G. ITHIER E. COLLIN P. ORFILA P. SENAT P. JOYEZ D. VION P. MEESON D. ESTEVE A. SHNIRMAN G. SCHOEN Y. MAKHLIN F. CHIARELLO Karlsruhe Landau Roma I. SIDDIQI F. PIERRE E. BOAKNIN L. FRUNZIO R. VIJAY C. RIGETTI M. METCALFE M. DEVORET remind: 10-4 error rate on qubit gates…, QND useful but not mandatory Yale quantronium sample 2mm Continuous measurement 100 -30dB 50 -23dB Dephasing (°) 0 -50 -100 -150 -200 1.2 1.3 1.4 Frequency (GHz) 1.5 1.6 Qubit in ground state Quantum Non-Demolition Fraction pulse Readout 1 (R1) 5ns 100ns 20ns 125ns Readout 2 (R2) 20ns 30ns Ps(R1) Ps(R2) Ps(R2/R1) 13.3% Ps(R1R2 ) 3.3% no pulse 17.6% pulse 61.3% 28.0% 19.1% 31.1% T1=1.3 s QND Frac. 18.8%
© Copyright 2026 Paperzz