LPHY 2000 Bordeaux France July 2000 Numerical solution of Dirac equation & its applications in intense laser physics Q. Su Intense Laser Physics Theory Unit Illinois State University J. Braun P. Peverly R. Wagner P. Krekora R. Grobe Support: NSF, Research Corporation, NCSA Goals Classical phase space approach valid for Non-linear systems of relativistic particles? Quantum cycloatoms Relativistic theory of tunneling Superluminal speeds Numerical techniques Liouville (r,p,t) H p p H t H c 4 c 2 (p A / c)2 V(r) P. Peverly, R. Wagner, Q. Su and R. Grobe, Las Phys. 10, 303 (2000) Dirac 2 i ic A V(r) c t J. Braun, Q. Su and R. Grobe, PRA 59, 604 (1999) Laser Magnetic field Bo || Br ,t Maximum speed v/c for each W 1.0 nonrelativistic relativistic 0.80 0.60 0.40 0.20 0.003 W L 0.004 0.005 0.006 L 0.0043a.u. E0 0.0500a.u. R.E. Wagner, Q. Su and R. Grobe, Phys. Rev. Lett. 84, 3282 (2000) Non-relativistic Relativistic 0 75 150 y 500 x Orbits stay in phase Time (in 2p/L Orbits dephase relativistically Liouville Dirac Confirmed: Dirac Cycloatoms P. Krekora, R. Wagner, Q. Su and R. Grobe, PRA, submitted Summary 1 - Phase space approach valid in relativistic regime - Quantum cycloatom confirmed R.E. Wagner, Q. Su and R. Grobe, Phys. Rev. Lett. 84, 3282 (2000) P. Krekora, R. Wagner, Q. Su and R. Grobe, PRA, submitted Questions about tunneling Dirac theory predict superluminal speeds? Violation of causality? If v > c Instantaneous speed inside the barrier? A.M. Steinberg, P.G. Kwiat and R.Y. Chiao, Phy. Rev. Lett. 71, 708 (1993) C. Spielmann, R. Szipöcs, A. Stingl and F. Krausz, Phys. Rev. Lett. 73, 2308 (1994) V. Gasparian, M. Ortuno, J. Ruiz and E. Cuevas, Phys. Rev. Lett. 75, 2312 (1995) L. Wang, private communications Theoretical Model Dirac 2 i t icx x c W(x) 1,2 ,3, 4 65,536 grid pts, 1,500,000 pts in time J. Braun, QS, R. Grobe, PRA 59, 604 (1999) 200 Dirac c 100 Schrödinger 0 0 0.02 0.04 w [a.u.] Dirac: + exact Schrödinger: o exact larger v for Dirac subluminal ve [a.u.] superluminal Dirac & Schrödinger => v > c possible 0.06 - stat. phase approx. - stat. phase approx. SPA best for broad packets Superluminal speeds = Pulse reshaping effect .. .. .. .. .. .. .. IQ Tunnel Center .. .. .. .. .. Center Center .. .. .. .. .. Center No violation of causality Violation of causality ? Causality violation if 2 (x,t) (x ct,t 0) x x P(x) 10-1 violation of causality 10-2 10-3 10-4 995 Schrödinger Dirac light front 1005 x [a.u.] 1015 2 Tunneling dynamics under the barrier P(x) P(x) T=0 0 10 T=0.050 100 10-2 T=0.045 T=0.035 10-2 10-4 T=0.040 T=0.030 10-4 P(x) 100 T=0.05 a.u. 10-2 10-6 10-4 0 10 T=0.025 T=0.055 barrier T=0.065 P(x) 100 10 T=0.1 a.u. -2 T=0.060 T=0.070 10-2 10-4 10-4 -8 T=0.075 0 x [a.u.] 8 10-6 -0.04 0 x [a.u.] 0.04 no spatial localization under the barrier P (x=0) 0.02 Tp Time localized state under barrier 0.01 T x [a.u.] 0.015 0 1 2 w/2 0.005 barrier -w/2 -0.005 1.0000 1.0001 Tp [a.u.] 1.0002 Spatially resolved tunneling velocity Summary 2 Dirac + Schrödinger theories predict superluminal effects Causality non-violation for Dirac theory Instantaneous tunneling velocity defined P.Krekora, QS, R.Grobe, Phys. Rev. Lett. (submitted) www.phy.ilstu.edu/ILP
© Copyright 2025 Paperzz