Reliability Project 1 Team 9 Philippe Delelis Florian Brouet SungHyeok Lee Data 1 N=21 2 Probabiblity Distribution Data 1 : Symmetric Simple cumulative Distribution Normal Weibull Log normal Bi-exponential Data 1 : Mean Rank Normal Weibull Log normal Bi-exponential Data 1 : Median rank Normal Weibull Log normal Bi-exponential Data 1 : The rest method Normal Log normal Bi-exponential Weibull Data 1 : Linearity Results Symmetric .S.C Mean Rank Median Rank The Rest Method Normal 0 0 0 0 Log-Normal X X X X Weibull 0 0 0 0 Bi-exponential 0 0 0 0 Data 1 : R (Correlation Coefficient Comparaison) Symmetric .S.C Mean Rank R SD R SD Normal 0.95883 0.20172 0.96493 0.16754 Log-Normal 0.84415 0.3925 0.83983 0.35807 Weibull 0.93251 0.32349 0.92194 0.30615 Bi-exponential 0.85644 0.4718 0.88683 0.36864 Median Rank The Rest Method R SD R SD Normal 0.96225 0.18434 0.95883 0.20172 Log-Normal 0.84255 0.37647 0.9612 0.19002 Weibull 0.92866 0.31387 0.8432 0.38198 Bi-exponential 0.87197 0.42048 0.93023 0.31675 n = 21 Data 1 : Value of Dnα Normal α = 0.05 Dnα =0,1882 Weibull, Biexponential α = 0.05 Dnα =0.1932 Normal α = 0.15 Dnα =0.1636 Weibull, Biexponential α = 0.15 Dnα =0.1668 K-S test : Symmetric Simple Cumulative Distribution Dash dot : α = 0.15 Line : α = 0.05 Normal • µ = 288,431 • σ = 196,078 Weibull • m = 1,166 • ξ = 326,693 Bi-exponential • ξ = 163,934 • x0= 378,885 Mean Rank Dash dot : α = 0.15 Line : α = 0.05 Normal • µ = 288,696 • σ = 217,391 Weibull • m = 1.021 • ξ = 338.885 Bi-exponential • ξ = 188,185 • x0= 386,741 Median Rank Dash dot : α = 0.15 Line : α = 0.05 Normal • µ = 286,939 • σ = 204,082 Weibull • m = 1,099 • ξ = 332,047 Bi-exponential • ξ = 171,527 • x0= 378,851 The Rest Method Dash dot : α = 0.15 Line : α = 0.05 Normal • µ = 285,8 • σ = 200 Weibull • m = 1,112 • ξ = 331,007 Bi-exponential • ξ = 169,492 • x0= 380,339 Data 1 : K-S Test Results Symmetric .S.C Mean Rank Median Rank The Rest Method Normal 0 0 0 0 Weibull x x 0 0 Bi-exponential x x x 0 Data 2 N=26 16 Data 2 : Symmetric S. C. Distribution Normal Weibull Log-Normal Bi-Exponential 17 Data 2 : Mean Rank Normal Log-Normal Weibull Bi-exponential 18 Data 2 : Median Rank Normal Weibull Log-Normal Bi-exponential 19 Data 2 : The Rest Method Normal Weibull Log-Normal Bi-exponential 20 Data 2 : Linearity Results Symmetric .S.C Mean Rank Median Rank The Rest Method Normal 0 0 0 0 Log-Normal X X X X Weibull 0 0 0 0 Bi-exponential 0 0 0 0 21 Data 2 : R (Correlation Coefficient Comparaison) Symmetric .S.C Mean Rank R SD R SD Normal 0.98122 0.1364 0.98162 0.1304 Log-Normal 0.89569 0.32143 0.89569 0.32143 Weibull 0.9646 0.2353 0.9646 0.2353 Bi-exponential 0.9005 0.39445 0.92236 0.35894 Median Rank The Rest Method R SD R SD Normal 0.9619 0.12848 0.9818 0.13082 Log-Normal 0.89421 0.31095 0.89482 0.3145 Weibull 0.9636 0.22677 0.96421 0.22889 Bi-exponential 0.9120 0.35259 0.90832 0.36637 22 n = 26 Data 2 : Value of Dnα Normal α = 0.05 Dnα =0.1702 Weibull, Biexponential α = 0.05 Dnα =0.175 Normal α = 0.15 Dnα =0.1474 Weibull, Biexponential α = 0.15 Dnα =0.1514 23 K-S test : Symmetric Simple Cumulative Distribution Dash dot : α = 0.15 Line : α = 0.05 Normal • µ = 330.367 • σ = 166.667 Weibull • m = 1.9055 • ξ = 340.52 Bi-exponential • ξ = 125 • x0= 368.75 24 Data 2 : Mean Rank Dash dot : α = 0.15 Line : α = 0.05 Normal • µ = 301.54 • σ = 160.527 Weibull • m = 1.8251 • ξ = 337.25 Bi-exponential • ξ = 145.85 • x0= 384.26 25 Data 2 : Median Rank Dash dot : α = 0.15 Line : α = 0.05 Normal • µ = 316.54 • σ = 166.06 Weibull • m = 1.84 • ξ = 343.7 Bi-exponential • ξ = 142.85 • x0= 405.28 26 Data 2 : The Rest Method Dash dot : α = 0.15 Line : α = 0.05 Normal • µ = 321.53 • σ = 166.6 Weibull • m = 1.81 • ξ = 342.87 Bi-exponential • ξ = 142.85 • x0= 409.97 27 Data 2 : K-S Test Results Symmetric .S.C Mean Rank Median Rank The Rest Method Normal X 0 0 0 Weibull 0 0 0 0 Bi-exponential 0 0 X X 28 Data 3 N=29 29 Data 3 : Symmetric Simple cumulative Distribution Normal Log normal Weibull Bi-exponential Data 3 : Mean Rank Normal Weibull Log normal Bi-exponential Data 3 : Median rank Log normal Normal Weibull Biexponential Data 3 : The rest method Log normal Normal Weibull Bi-exponential Data 3 : Linearity Results Symmetric .S.C Mean Rank Median Rank The Rest Method Normal 0 0 0 0 Log-Normal X X X X Weibull 0 0 0 0 Bi-exponential 0 0 0 0 Data 3 : R (Correlation Coefficient Comparaison) Symmetric .S.C Mean Rank R SD R SD Normal 0.98703 0.14944 0.98605 0.15517 Log-Normal 0.86032 0.47444 0.86453 0.4685 Weibull 0.92709 0.42972 0.93019 0.42177 Bi-exponential 0.94846 0.36331 0.94377 0.37985 Median Rank The Rest Method R SD R SD Normal 0.98419 0.17302 0.98352 0.17899 Log-Normal 0.86901 0.48339 0.87037 0.48743 Weibull 0.94004 0.41502 0.94303 0.41164 Bi-exponential 0.94377 0.37985 0.93343 0.44388 n = 29 Data 3 : Value of Dnα Normal α = 0.05 Dnα =0.1612 Weibull, Biexponential α = 0.05 Dnα =0.1660 Normal α = 0.15 Dnα =0.1486 Weibull, Biexponential α = 0.15 Dnα =0.1436 K-S test : Symmetric Simple Cumulative Distribution Dash dot : α = 0.15 Line : α = 0.05 Normal • µ = 262.55 • σ = 178.23 Weibull • m = 0.80 • ξ = 306.43 Bi-exponential • ξ = 156.01 • x0= 332.30 Mean Rank Dash dot : α = 0.15 Line : α = 0.05 Normal • µ = 262.78 • σ = 180.17 Weibull • m = 0.80 • ξ = 334.45 Bi-exponential • ξ = 167.50 • x0= 351.75 Median Rank Dash dot : α = 0.15 Line : α = 0.05 Normal • µ = 263.04 • σ = 182.68 Weibull • m = 0.86 • ξ = 316.02 Bi-exponential • ξ = 159.24 • x0= 350.33 The Rest Method Dash dot : α = 0.15 Line : α = 0.05 Normal • µ = 260.89 • σ = 175.52 Weibull • m = 0.87 • ξ = 331.82 Bi-exponential • ξ = 157.23 • x0= 350.62 Data 3 : K-S Test Results Symmetric .S.C Mean Rank Median Rank The Rest Method Normal 0 0 0 0 Weibull X X X X Bi-exponential 0 0 0 X Data 1+2 N=47 Data 1+2: Symmetric Simple Cumulative Distribution Normal Log normal Bi-exponential Weibull Data 1+2 : Mean Rank Normal Log normal Bi-exponential Weibull Data 1+2 : Median Rank Normal Log normal Bi-exponential Weibull Data 1+2 : The Rest Method Normal Log normal Bi-exponential Weibull Linearity Results Symmetric .S.C Mean Rank Median Rank The Rest Method Normal 0 0 0 0 Log-Normal X X X X Weibull 0 0 0 0 Bi-exponential 0 0 0 0 Data 1+2 : R (Correlation Coefficient Comparaison) Symmetric .S.C Mean Rank R SD R SD Normal 0.97609 0.15421 0.97995 0.13307 Log-Normal 0.85885 0.37466 0.85304 0.36025 Weibull 0.96044 0.25098 0.94964 0.26211 Bi-exponential 0.87964 0.43778 0.90253 0.36467 Median Rank The Rest Method R SD R SD Normal 0.97828 0.14319 0.9776 0.14675 Log-Normal 0.85644 0.36809 0.85734 0.37037 Weibull 0.95623 0.25496 0.95787 0.25323 Bi-exponential 0.89121 0.40196 0.88741 0.41395 n = 47 Data 1+2 : Value of Dnα Normal α = 0.05 Weibull, Biexponential α = 0.05 Normal α = 0.15 Weibull, Biexponential α = 0.15 Dnα = 0,1282 Dnα = 0,1332 Dnα = 0,111 Dnα = 0,1175 Data 1+2 : K-S Test (Symmetric Simple Cumulative Distribution) Dash dot : α = 0.15 Line : α = 0.05 Normal • µ = 292,04 • σ = 168,06 Weibull • m = 1,45 • ξ = 348,25 Bi-exponential • ξ = 139,86 • x0= 372,16 Data 1+2 : K-S Test (Mean Rank) Dash dot : α = 0.15 Line : α = 0.05 Normal • µ = 292,44 • σ = 178,25 Weibull • m = 1.35 • ξ = 343,13 Bi-exponential • ξ = 149,25 • x0= 374,04 Data 1+2 : K-S Test (Median Rank) Dash dot : α = 0.15 Line : α = 0.05 Normal • µ = 292,18 • σ = 172,41 Weibull • m = 1.42 • ξ = 340,09 Bi-exponential • ξ = 143,88 • x0= 372,86 Data 1+2 : K-S Test (The Rest Method) Dash dot : α = 0.15 Line : α = 0.05 Normal • µ = 292,30 • σ = 170,94 Weibull • m = 1,44 • ξ = 339,24 Bi-exponential • ξ = 142,45 • x0= 372,63 Data 1+2 : K-S Test Results Symmetric .S.C Mean Rank Median Rank The Rest Method Normal 0 0 0 0 Weibull X X X X Bi-exponential X X X X Data 2+3 N=55 55 Data 2+3 : Symmetric Simple Cumulative Distribution Normal Log-Normal Weibull Bi-Exponential 56 Data 2+3 : Mean Rank Normal Log-Normal Weibull Bi-exponential 57 Data 2+3 : Median Rank Normal Weibull Log-Normal Bi-exponential 58 Data 2+3 : The Rest Method Normal Weibull Log-Normal Bi-exponential 59 Linearity Results Symmetric .S.C Mean Rank Median Rank The Rest Method Normal 0 0 0 0 Log-Normal X X X X Weibull 0 0 0 0 Bi-exponential 0 0 0 0 60 Data 2+3 : R (Correlation Coefficient Comparaison) Symmetric .S.C Mean Rank R SD R SD Normal 0.97801 0.14793 0.98381 0.1204 Log-Normal 0.74931 0.4995 0.73564 0.48649 Weibull 0.89612 0.40745 0.86468 0.43368 Bi-exponential 0.88209 0.43411 0.90544 0.36254 Median Rank The Rest Method R SD R SD Normal 0.98109 0.13404 0.9801 0.13863 Log-Normal 0.74288 0.49423 0.74509 0.49619 Weibull 0.88134 0.42199 0.88643 0.41743 Bi-exponential 0.89376 0.39929 0.8899 0.4110 61 n = 55 Data 2+3 : Value of Dnα Normal α = 0.05 Dnα = 0.119 Weibull, Biexponential α = 0.05 Dnα = 0.124 Normal α = 0.15 Weibull, Biexponential α = 0.15 Dnα = 0.1035 Dnα = 0.107 62 Data 2+3 : K-S Test (Symmetric Simple Cumulative Distribution) Dash dot : α = 0.15 Line : α = 0.05 Normal • µ = 279.55 • σ = 166.667 Weibull • m = 1.1293 • ξ = 341.3 Bi-exponential • ξ = 138.8 • x0= 360.27 63 Data 2+3 : K-S Test (Mean Rank) Dash dot : α = 0.15 Line : α = 0.05 Normal • µ = 319.2 • σ = 200 Weibull • m = 1.0349 • ξ = 349.87 Bi-exponential • ξ = 147.05 • x0= 360.29 64 Data 2+3 : K-S Test (Median Rank) Dash dot : α = 0.15 Line : α = 0.05 Normal • µ = 328.4 • σ = 200 Weibull • m = 1.0855 • ξ = 344.94 Bi-exponential • ξ = 142.86 • x0= 362 65 Data 2+3 : K-S Test (The Rest Method) Dash dot : α = 0.15 Line : α = 0.05 Normal • µ = 330 • σ = 200 Weibull • m = 1.1 • ξ = 342.53 Bi-exponential • ξ = 140.84 • x0= 359.97 66 Data 2+3 : K-S Test Results Symmetric .S.C Mean Rank Median Rank The Rest Method Normal 0 X X X Weibull X X X X Bi-exponential 0 0 0 0 67 Data 1+2+3 N=76 Data 1+2+3 : Symmetric Simple Cumulative Distribution Normal Weibull Log-Normal Bi-Exponential 69 Data 1+2+3 : Mean Rank Normal Log-Normal Weibull Bi-exponential 70 Data 1+2+3 : Median Rank Log-Normal Normal Weibull Bi-exponential 71 Data 1+2+3 : The Rest Method Normal Weibull Log-Normal Bi-exponential 72 Linearity Results Symmetric .S.C Mean Rank Median Rank The Rest Method Normal 0 0 0 0 Log-Normal X X X X Weibull 0 0 0 0 Bi-exponential 0 0 0 0 73 Data 1+2+3 : R (Correlation Coefficient Comparaison) Symmetric .S.C Mean Rank R SD R SD Normal 0.99056 0.13213 0.99012 0.13519 Log-Normal 0.88292 0.45247 0.88564 0.44766 Weibull 0.95282 0.36607 0.95435 0.36040 Bi-exponential 0.94838 0.38246 0.94495 0.39482 Median Rank The Rest Method R SD R SD Normal 0.98881 0.14718 0.98836 0.15108 Log-Normal 0.88867 0.45249 0.88958 0.4537 Weibull 0.96072 0.34544 0.96261 0.34023 Bi-exponential 0.94495 0.39482 0.93729 0.43776 74 n = 76 Data 1+2+3 : Value of Dnα Normal α = 0.05 Dnα =0.1018 Weibull, Biexponential α = 0.05 Dnα =0.1058 Normal α = 0.15 Weibull, Biexponential α = 0.15 Dnα = 0.0884 Dnα =0.0914 75 Data 1+2+3 : K-S Test (Symmetric Simple Cumulative Distribution) Dash dot : α = 0.15 Line : α = 0.05 Normal • µ = 280.89 • σ = 170.05 Weibull • m = 1.09 • ξ = 342.02 Bi-exponential • ξ = 145.14 • x0= 357.04 76 Data 1+2+3 : K-S Test (Mean Rank) Dash dot : α = 0.15 Line : α = 0.05 Normal • µ = 281.28 • σ = 172.29 Weibull • m = 1.09 • ξ = 345.17 Bi-exponential • ξ = 150.15 • x0= 364.86 77 Data 1+2+3 : K-S Test (Median Rank) Dash dot : α = 0.15 Line : α = 0.05 Normal • µ = 281.65 • σ = 174.42 Weibull • m = 1.14 • ξ = 329.72 Bi-exponential • ξ = 146.41 • x0= 363.10 78 Data 1+2+3 : K-S Test (The Rest Method) Dash dot : α = 0.15 Line : α = 0.05 Normal • µ = 280.46 • σ = 171.83 Weibull • m = 1.15 • ξ = 333.18 Bi-exponential • ξ = 145.35 • x0= 363.38 79 Data 1+2+3 : K-S Test Results Symmetric .S.C Mean Rank Median Rank The Rest Method Normal 0 0 0 0 Weibull X X X X Bi-exponential X X X X 80 Conclusion • R value comparison - Normal > Weibull > Bi-Exponential > Lognormal but R value and C.D.F doesn’t guarantee optimal distribution • The best distribution Data The fittest distribution C. D. F Data 1 Normal distribution Mean rank Data 2 Weibull distribution Symmetric .S.C Data 3 Normal distribution Mean rank Data 1+2 Normal distribution Mean rank Data 2+3 Bi-Exponential distribution Mean rank Data 1+2+3 Normal distribution Symmetric .S.C
© Copyright 2026 Paperzz