The Integral Test and p-series Section 8.3 AP Calc Thm 8.10 Integral Test If f is positive, continuous, and decreasing for x≥1 and an f (n), then a n 1 n and 1 f ( x)dx either both converge or both diverge. Use the Integral Test to determine the convergence or divergence of the series: 3 1) n 1 2n 4 5 2) 2 n 1 n 1 Note: Just because an improper integral converges to a value k, does not mean that the series also converges to the same value. 1 1 1 1 1 p-series: p p p p p ... 1 2 3 4 n 1 n where p>0 is constant 1 1 1 Harmonic Series: 1 ... 2 3 n 1 n (p-series with p=1) 1 n 1 an b Thm 8.11 Convergence of p-series 1 1 1 1 1 The p-series p p p p p ... 1 2 3 4 n 1 n 1) Converges if p>1 2) Diverges if 0<p≤1 Determine the Convergence/Divergence: 1 3) 8 n n 1 1 1 1 ... 5) 1 3 3 3 4 9 16 1 4) 2 n 1 n 5 6) n 1 n Determine the Convergence or Divergence of the series: A) n n2 1 n 1 2 C) (0.03) n 0 B) n 1 n 1 n 0.03 2 2 D) 3 5 n n 1 n Determine the Convergence or Divergence of the series: 1 E) 1 n n 1 n 1 F) 4 n 2 n(ln n)
© Copyright 2026 Paperzz