On the Set of Simple Hypergraph Degree Sequences

Applied Mathematical Sciences, Vol. 9, 2015, no. 5, 243 - 253
HIKARI Ltd, www.m-hikari.com
http://dx.doi.org/10.12988/ams.2015.411972
On the Set of Simple Hypergraph Degree
Sequences
Hasmik Sahakyan
Institute for Informatics and Automation Problems
National Academy of Sciences
1 P. Sevak st., 0014 Yerevan, Armenia
Copyright © 2014 Hasmik Sahakyan. This is an open access article distributed under the
Creative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.
Abstract
For a given π‘š, 0 < π‘š ≀ 2𝑛 , let π·π‘š (𝑛) denote the set of all hypergraphic
sequences for hypergraphs with 𝑛 vertices and π‘š hyperedges. A hypergraphic
sequence in π·π‘š (𝑛) is upper hypergraphic if all its components are at least π‘š/2.
Μ‚π‘š (𝑛) denote the set of all upper hypergraphic sequences. A structural
Let 𝐷
Μ‚π‘š (𝑛) was
characterization of the lowest and highest rank maximal elements of 𝐷
provided in an earlier study. In the current paper we present an analogous
characterization for all upper non-hypergraphic sequences. This allows
determining the thresholds π‘ŸΜ…π‘šπ‘–π‘› and π‘Ÿπ‘šπ‘Žπ‘₯ such that all upper sequences of ranks
lower than π‘ŸΜ…π‘šπ‘–π‘› are hypergraphic and all sequences of ranks higher than π‘Ÿπ‘šπ‘Žπ‘₯ are
non-hypergraphic.
Keywords: hypergraph, degree sequence, complement
1. Introduction
A hypergraph 𝐻 is a pair (𝑉, 𝐸), where 𝑉 is the vertex set of 𝐻, and 𝐸, the set of
hyperedges, is a collection of non-empty subsets of 𝑉. The degree of a vertex 𝑣 of
𝐻, denoted by 𝑑(𝑣), is the number of hyperedges in 𝐻 containing 𝑣. A
hypergraph 𝐻 is simple if it has no repeated hyperedges. A hypergraph 𝐻 is π‘Ÿuniform if all hyperedges contain π‘Ÿ-vertices.
Let 𝑉 = {𝑣1 , β‹― , 𝑣𝑛 }. 𝑑(𝐻) = (𝑑(𝑣1 ), β‹― , 𝑑(𝑣𝑛 )) is the degree sequence of
hypergraph 𝐻. A sequence 𝑑 = (𝑑1 , β‹― , 𝑑𝑛 ) is hypergraphic if there is a simple
hypergraph 𝐻 with degree sequence 𝑑. For a given π‘š, 0 < π‘š ≀ 2𝑛 , let π»π‘š (𝑛)
denote the set of all simple hypergraphs ([𝑛], 𝐸), where [𝑛] = {1,2, β‹― , 𝑛}, and
244
Hasmik Sahakyan
|𝐸| = π‘š. Let π·π‘š (𝑛) denote the set of all hypergraphic sequences of hypergraphs
in π»π‘š (𝑛). The subject of our investigation is the set π·π‘š (𝑛), as well as its
complement, the set of integer 𝑛-tuples which are not hypergraphic sequences for
π»π‘š (𝑛).
The problem of characterization of π·π‘š (𝑛) remains open even for 3-uniform
hypergraphs (see [4]-[13]). The problem has its interpretation in terms of
multidimensional binary cubes that arises out of the discrete isoperimetric
problem for n-dimensional binary cube [1-3]. In [6] the polytope of degree
sequences of uniform hypergraphs was studied and several partial results were
obtained. It was shown in [10] that any two 3-uniform hypergraphs can be
transformed into each other by using a sequence of trades. Several necessary and
one sufficient conditions were obtained for existence of simple 3-uniform
hypergraphs in [8]. Steepest degree sequences were defined in [7] and it was
shown that the whole set of degree sequences of simple uniform hypergraphs can
be determined by its steepest elements. Upper and lower degree sequences were
defined for π·π‘š (𝑛) in [11] where it was proven that the whole set π·π‘š (𝑛) can be
easily determined by the set of its upper and/or lower degree sequences. Upper
degree sequences of the lowest and highest ranks were characterized in our earlier
study [12]. In the current paper we extend the study to the complementary area of
π·π‘š (𝑛), which can be supportive in solving the problem algorithmically.
𝑛
𝑛
Define the grid π›―π‘š+1
as: π›―π‘š+1
= {(π‘Ž1 , β‹― , π‘Žπ‘› )|0 ≀ π‘Žπ‘– ≀ π‘š π‘“π‘œπ‘Ÿ π‘Žπ‘™π‘™ 𝑖}, and place a
𝑛
component-wise partial order on π›―π‘š+1
: (π‘Ž1 , β‹― , π‘Žπ‘› ) ≀ (𝑏1 , β‹― , 𝑏𝑛 ) if and only if
π‘Žπ‘– ≀ 𝑏𝑖 for all 𝑖. The rank π‘Ÿ(π‘Ž1 , β‹― , π‘Žπ‘› ) of an element (π‘Ž1 , β‹― , π‘Žπ‘› ) is defined as
𝑛
(π‘Ž1 + β‹― + π‘Žπ‘› ). The Hasse diagram of π›―π‘š+1
has π‘š βˆ™ 𝑛 + 1 levels according to the
ranks of elements: the 𝑖-th level contains all elements of the rank 𝑖.
π‘Ÿ(π‘Ž1 , β‹― , π‘Žπ‘› ) = π‘Ÿ(𝑏1 , β‹― , 𝑏𝑛 ) + 1 if (π‘Ž1 , β‹― , π‘Žπ‘› ) covers (𝑏1 , β‹― , 𝑏𝑛 ) (see [14] for
𝑛
undefined terms). In this manner, π·π‘š (𝑛) is a subset of π›―π‘š+1
.
A hypergraphic sequence 𝑑 = (𝑑1 , β‹― , 𝑑𝑛 ) ∈ π·π‘š (𝑛),
is called upper
hypergraphic if 𝑑𝑖 β‰₯ π‘šπ‘šπ‘–π‘‘ for all 𝑖, where π‘šπ‘šπ‘–π‘‘ = (π‘š + 1)/2 for odd π‘š and
Μ‚π‘š (𝑛) denote the set of all upper hypergraphic
π‘šπ‘šπ‘–π‘‘ = π‘š/2 for even π‘š. Let 𝐷
sequences in π·π‘š (𝑛). According to [11], for constructing all elements of π·π‘š (𝑛), it
Μ‚π‘š (𝑛), reducing in this manner the problem of
is sufficient to find elements of 𝐷
𝑛
Μ‚ , where 𝐻
Μ‚=
describing the set of degree sequences from π›―π‘š+1
to 𝐻
{(π‘Ž1 , β‹― , π‘Žπ‘› )|π‘šπ‘šπ‘–π‘‘ ≀ π‘Žπ‘– ≀ π‘š π‘“π‘œπ‘Ÿ π‘Žπ‘™π‘™ 𝑖}.
Μ‚π‘š (𝑛) = π·π‘š (𝑛) β‹‚ 𝐻
Μ‚ . Figure 1 illustrates Hasse diagram of 𝛯53 .
Thus 𝐷
Μ‚π‘š (𝑛) and π·π‘š (𝑛) in 𝛯53 .
Figure 2 demonstrates 𝐷
Μ‚ \𝐷
Μ‚π‘š (𝑛) is the set of all upper non-hypergraphic sequences. Recall
πΉΜ‚π‘š (𝑛) = 𝐻
Μ‚π‘š (𝑛) is an ideal in 𝐻
Μ‚ (πΉΜ‚π‘š (𝑛) is a filter in 𝐻
Μ‚ ).
([11]) that 𝐷
Μ‚π‘š (𝑛) and πΉΜ‚π‘š (𝑛) in 𝐻
Μ‚.
Figure 3 illustrates 𝐷
On the set of simple hypergraph degree sequences
245
444
434
443
442
432
441
431
440
430
421
420
410
411
401
400
422
340
330
412
402
320
300
413
403
321
301
423
341
331
311
310
433
240
230
322
312
302
220
210
221
201
404
130
212
121
101
100
213
203
030
132
112
102
224
142
122
040
010
214
204
031
021
134
133
113
103
144
143
123
041
124
032
104
022
044
043
114
042
012
011
020
234
233
223
141
244
243
314
304
131
111
110
200
232
222
202
120
242
313
140
324
333
323
303
334
343
414
241
231
211
424
342
332
344
034
024
033
023
013
014
004
003
002
001
000
Figure 1.
Μ‚.
Circles correspond to elements/vertices of 𝛯53 . Highlighted part (gray) composes 𝐻
444
443
433
442
441
430
421
420
410
400
432
431
440
411
401
422
340
330
402
320
310
412
321
311
230
210
413
403
240
332
312
201
200
404
231
130
212
111
101
100
232
131
121
030
141
213
132
112
224
142
204
031
134
133
124
042
032
113
012
144
143
123
103
021
011
214
041
122
102
234
233
223
203
040
243
314
304
020
010
244
324
242
222
202
120
110
313
140
334
333
323
303
344
343
414
241
221
211
424
342
322
302
220
301
300
423
341
331
434
114
104
022
013
044
043
033
024
023
014
004
003
002
001
000
Figure 2.
034
Μ‚π‘š (𝑛).
Whole highlighted part composes π·π‘š (𝑛), and its lighter part is 𝐷
246
Hasmik Sahakyan
444
433
442
441
440
431
420
410
402
320
401
412
340
330
411
400
422
431
430
310
423
432
331
321
311
301
300
230
403
240
210
211
200
404
231
130
110
313
212
202
121
111
101
040
030
213
132
112
102
224
204
041
031
113
144
133
124
042
032
114
104
022
012
134
143
123
103
021
011
214
142
122
203
020
010
223
304
234
233
314
141
131
243
324
242
232
244
334
333
222
140
100
343
323
303
120
201
414
241
221
302
220
332
322
312
424
342
413
341
344
434
443
013
044
034
043
033
024
023
014
004
003
002
001
000
Figure 3.
Μ‚ . Light part in 𝐻
Μ‚ is 𝐷
Μ‚π‘š (𝑛), and dark part is πΉΜ‚π‘š (𝑛).
Highlighted part composes 𝐻
In [12] we obtained simple formulas for the lowest π‘Ÿπ‘šπ‘–π‘› and the highest π‘Ÿπ‘šπ‘Žπ‘₯
Μ‚π‘š (𝑛).
ranks of maximal elements in 𝐷
In this paper we present analogous results for non-hypergraphic sequences,
namely we seek for the lowest and highest ranks π‘ŸΜ…π‘šπ‘–π‘› and π‘ŸΜ…π‘šπ‘Žπ‘₯ , respectively, of
minimal elements of πΉΜ‚π‘š (𝑛). Section 2 determines a characterization of the lowest
rank. We obtain a series of minimal elements of πΉΜ‚π‘š (𝑛) and prove that these
elements are the lowest rank non-hypergraphic sequences. Section 3 determines
Μ‚ of ranks
the highest rank minimal elements. We conclude that all sequences in 𝐻
Μ‚ of ranks higher than π‘Ÿπ‘šπ‘Žπ‘₯
lower than π‘ŸΜ…π‘šπ‘–π‘› are hypergraphic and all sequences in 𝐻
are non-hypergraphic. In the last section we give some estimates on lowest and
Μ‚ depending on the values of π‘š.
highest ranks in 𝐻
2. Lowest rank
In this section we provide a characterization of the lowest rank minimal elements
of πΉΜ‚π‘š (𝑛). We obtain a series of minimal elements of πΉΜ‚π‘š (𝑛) and prove that these
elements are the lowest rank non-hypergraphic sequences.
Let π‘š be given in the standard binary representation form:
π‘š = 2π‘˜1 + β‹― + 2π‘˜π‘ where π‘˜1 > β‹― > π‘˜π‘ > 0.
(1)
Μ‚π‘š (𝑛) is defined in [12] as follows:
The lowest rank π‘Ÿπ‘šπ‘–π‘› of maximal elements of 𝐷
𝑝
π‘˜
π‘˜
π‘Ÿπ‘šπ‘–π‘› = βˆ‘π‘–=1((𝑛 βˆ’ π‘˜π‘– βˆ’ (𝑖 βˆ’ 1)) βˆ™ 2 𝑖 + π‘˜π‘– βˆ™ 2 𝑖 βˆ’1 ).
On the set of simple hypergraph degree sequences
247
Μ‚π‘š (𝑛) corresponds to a hypergraph
The maximal element π‘‘π‘šπ‘–π‘› of rank π‘Ÿπ‘šπ‘–π‘› in 𝐷
whose edges are identified with the initial π‘š-segment of the reverse lexicographic
ordering of [2𝑛 ] and is unique (up to coordinate permutations).
𝑑𝑖
𝑑𝑖
𝑑𝑖
𝑑𝑖
π‘—βˆ’1
= (βˆ‘π‘™=1 2π‘˜π‘™βˆ’1 ) + 2π‘˜π‘— for 𝑖 = π‘˜π‘— + 1, 𝑗 = 1, β‹― , 𝑝,
𝑗
= (βˆ‘π‘™=1 2π‘˜π‘™βˆ’1 ) + (βˆ‘π‘π‘™=𝑗+1 2π‘˜π‘— ) for π‘˜π‘—+1 + 2 ≀ 𝑖 ≀ π‘˜π‘— , 𝑗 = 1, β‹― , 𝑝 βˆ’ 1,
= (βˆ‘π‘π‘™=1 2π‘˜π‘™βˆ’1 ) = π‘š/2 for 1 ≀ 𝑖 ≀ π‘˜π‘ ,
𝑝
= (βˆ‘π‘™=1 2π‘˜π‘™ ) = π‘š for π‘˜1 + 2 ≀ 𝑖 ≀ 𝑛.
Thus π‘‘π‘šπ‘–π‘› has the following form:
𝑛2
𝑛1
π‘‘π‘šπ‘–π‘›
𝑛3
⏞ β‹―,π‘š,⏞
= (π‘š,
𝑑𝑛1 +1 , β‹― , 𝑑𝑛1 +𝑛2 , ⏞
π‘šπ‘šπ‘–π‘‘ , β‹― , π‘šπ‘šπ‘–π‘‘ )
(2)
where π‘š > 𝑑𝑛1 +1 β‰₯ β‹― β‰₯ 𝑑𝑛1 +𝑛2 > π‘šπ‘šπ‘–π‘‘ ;
𝑛1 + 𝑛2 + 𝑛3 = 𝑛. Notice that
π‘˜1
𝑑𝑛1 +1 = 2 .
Below, we establish two easily verified properties of π‘‘π‘šπ‘–π‘› which will be used to
prove our results.
Property 1. 𝑑𝑖 is the largest possible value for fixed 𝑑1 , β‹― , π‘‘π‘–βˆ’1.
Property 2.
a) 𝑛1 > 0 if and only if π‘š ≀ 2π‘›βˆ’1. If 2π‘‘βˆ’1 < π‘š ≀ 2𝑑 for some 𝑑 ≀ 𝑛 then
𝑛1 = 𝑛 βˆ’ 𝑑.
b) 𝑛2 = 0 if and only if π‘š = 2𝑑 for some 𝑑.
c) 𝑛3 = π‘˜π‘ .
We will also use the notions of flatter and steeper elements defined as follows:
Let π‘Žπ‘– β‰₯ π‘Žπ‘— + 2 for some 1 ≀ 𝑖, 𝑗 ≀ 𝑛, then (π‘Ž1 , β‹― , π‘Žπ‘– βˆ’ 1, β‹― , π‘Žπ‘— + 1, β‹― , π‘Žπ‘› ) is
flatter than (π‘Ž1 , β‹― , π‘Žπ‘› ) and (π‘Ž1 , β‹― , π‘Žπ‘› ) is steeper than (π‘Ž1 , β‹― , π‘Žπ‘– βˆ’ 1, β‹― , π‘Žπ‘— +
1, β‹― , π‘Žπ‘› ). If (π‘Ž1 , β‹― , π‘Žπ‘› ) ∈ π·π‘š (𝑛), then all elements flatter than (π‘Ž1 , β‹― , π‘Žπ‘› ) also
belong to π·π‘š (𝑛) (see [7]).
The following theorem determines a minimal element of the lowest rank of
πΉΜ‚π‘š (𝑛).
Theorem 1. Let π‘‘π‘šπ‘–π‘› be presented as in (2).
(1) If π‘š β‰  2𝑑 for arbitrary 𝑑, then:
𝑛1
π‘›βˆ’π‘›1 βˆ’1
⏞ β‹― , π‘š , 2π‘˜1 + 1, ⏞
a) π‘‘Μ…π‘šπ‘–π‘› = (π‘š,
π‘šπ‘šπ‘–π‘‘ , β‹― , π‘šπ‘šπ‘–π‘‘ )
πΉΜ‚π‘š (𝑛), where 2π‘˜1 is the first component in (1).
b) π‘Ÿ(π‘‘Μ…π‘šπ‘–π‘› ) = π‘ŸΜ…π‘šπ‘–π‘› .
(2) If π‘š = 2𝑑 for some 𝑑, then:
is a minimal element of
248
Hasmik Sahakyan
𝑛1
π‘›βˆ’π‘›1 βˆ’1
⏞ β‹― , π‘š , π‘šπ‘šπ‘–π‘‘ + 1, ⏞
a) π‘‘Μ…π‘šπ‘–π‘› = (π‘š,
π‘šπ‘šπ‘–π‘‘ , β‹― , π‘šπ‘šπ‘–π‘‘ ) is a minimal element of
πΉΜ‚π‘š (𝑛).
b) π‘Ÿ(π‘‘Μ…π‘šπ‘–π‘› ) = π‘ŸΜ…π‘šπ‘–π‘› .
Proof. We consider both cases separately.
(1) π‘š β‰  2𝑑 . Then 𝑛2 > 0 by Property 2.
Μ‚ and all
a) Here it suffices to show that π‘‘Μ…π‘šπ‘–π‘› is a non-hypergraphic sequence in 𝐻
Μ…
Μ…
Μ‚ covered by π‘‘π‘šπ‘–π‘› are hypergraphic in 𝐻
Μ‚ . π‘‘π‘šπ‘–π‘› βˆ‰ 𝐷
Μ‚π‘š (𝑛) by Property
elements of 𝐻
Μ…
Μ‚
1. All elements of 𝐻 covered by π‘‘π‘šπ‘–π‘› have one of the following forms:
𝑛1
π‘›βˆ’π‘›1 βˆ’1
⏞ β‹― , π‘š , 2 π‘˜1 , ⏞
(π‘š,
π‘šπ‘šπ‘–π‘‘ , β‹― , π‘šπ‘šπ‘–π‘‘ )
𝑛1
(3)
π‘›βˆ’π‘›1 βˆ’1
⏞ β‹― , π‘š, π‘š βˆ’ 1 , 2π‘˜1 + 1, ⏞
(π‘š,
π‘šπ‘šπ‘–π‘‘ , β‹― , π‘šπ‘šπ‘–π‘‘ )
(4)
Μ‚π‘š (𝑛). If π‘š = 2π‘˜1 + 1, then
Sequence (3) is less than π‘‘π‘šπ‘–π‘› and hence belongs to 𝐷
π‘˜1
sequence (4) is just a permutation of (3). If π‘š β‰₯ 2 + 2, then (4) is flatter than
(3), and therefore is hypergraphic.
Μ‚ of π‘Ÿ(π‘Ž) < π‘Ÿ(π‘‘Μ…π‘šπ‘–π‘› ) belong to 𝐷
Μ‚π‘š (𝑛). It is
b) We have to prove that all π‘Ž ∈ 𝐻
Μ‚ of π‘Ÿ(π‘Ž) = π‘Ÿ(π‘‘Μ…π‘šπ‘–π‘› ) βˆ’ 1 belong to 𝐷
Μ‚π‘š (𝑛).
sufficient to show that all π‘Ž ∈ 𝐻
𝑛1
π‘›βˆ’π‘›1 βˆ’1
⏞ β‹―,π‘š,2 ,⏞
Consider 𝑑 = (π‘š,
π‘šπ‘šπ‘–π‘‘ , β‹― , π‘šπ‘šπ‘–π‘‘ ) which is of rank π‘Ÿ(π‘‘Μ…π‘šπ‘–π‘› ) βˆ’ 1.
β€²
π‘˜1
Μ‚ of the rank π‘Ÿ(π‘‘Μ…π‘šπ‘–π‘› ) βˆ’ 1 can be obtained from 𝑑 β€² by
All elements in 𝐻
combinations of the following unit operations:
i) replace (π‘š, 2π‘˜1 ) by (π‘š βˆ’ 1,2π‘˜1 + 1);
ii) replace (π‘š, π‘šπ‘šπ‘–π‘‘ ) by (π‘š βˆ’ 1, π‘šπ‘šπ‘–π‘‘ + 1);
iii) replace (2π‘˜1 , π‘šπ‘šπ‘–π‘‘ ) by (2π‘˜1 βˆ’ 1, π‘šπ‘šπ‘–π‘‘ + 1).
In all three cases above the resulting sequence is either flatter than 𝑑 β€² or is a
Μ‚π‘š (𝑛).
permutation of 𝑑′ , and therefore belongs to 𝐷
𝑑
(2) π‘š = 2 . Then 𝑛2 = 0 by Property 2.
Μ‚π‘š (𝑛) and all elements of 𝐻
Μ‚
a) Here it is only required to prove that π‘‘Μ…π‘šπ‘–π‘› βˆ‰ 𝐷
Μ‚ . π‘‘Μ…π‘šπ‘–π‘› βˆ‰ 𝐷
Μ‚π‘š (𝑛) because
covered by π‘‘Μ…π‘šπ‘–π‘› are hypergraphic sequences in 𝐻
Μ…
Μ‚π‘š (𝑛).
π‘‘π‘šπ‘–π‘› > π‘‘π‘šπ‘–π‘› and π‘‘π‘šπ‘–π‘› is a maximal element of 𝐷
Μ…
Μ‚
All elements of 𝐻 covered by π‘‘π‘šπ‘–π‘› have one of the following forms:
𝑛3
𝑛1
⏞ β‹―,π‘š,⏞
(π‘š,
π‘šπ‘šπ‘–π‘‘ , β‹― , π‘šπ‘šπ‘–π‘‘ ) or
𝑛1
𝑛3 βˆ’1
⏞ β‹― , π‘š, π‘š βˆ’ 1 , π‘šπ‘šπ‘–π‘‘ + 1, ⏞
(π‘š,
π‘šπ‘šπ‘–π‘‘ , β‹― , π‘šπ‘šπ‘–π‘‘ ).
On the set of simple hypergraph degree sequences
249
In the former form this is just π‘‘π‘šπ‘–π‘› and in the latter form this is flatter than
Μ‚π‘š (𝑛).
π‘‘π‘šπ‘–π‘› , and hence belongs to 𝐷
Μ‚ belong
b) We have to prove that all elements π‘Ž of π‘Ÿ(π‘Ž) = π‘‘Μ…π‘šπ‘–π‘› βˆ’ 1 in 𝐻
𝑛1
𝑛3
Μ‚π‘š (𝑛). These are flatter than π‘‘π‘šπ‘–π‘› = (π‘š,
⏞ β‹―,π‘š,⏞
to 𝐷
π‘šπ‘šπ‘–π‘‘ , β‹― , π‘šπ‘šπ‘–π‘‘ ), and
Μ‚π‘š (𝑛).
hence belong to 𝐷

Remark that in case of hypergraphic sequences there is a unique maximal element
Μ‚π‘š (𝑛), whereas in case of non-hypergraphic sequences there are a
of rank π‘Ÿπ‘šπ‘–π‘› in 𝐷
number of minimal elements of rank π‘ŸΜ…π‘šπ‘–π‘› in πΉΜ‚π‘š (𝑛).
Theorem 2 below produces a series of minimal elements of πΉΜ‚π‘š (𝑛).
Theorem 2.
(1) If π‘š β‰  2𝑑 then
𝑛1
π‘›βˆ’π‘›1 βˆ’1
⏞ β‹― , π‘š, π‘š βˆ’ 𝑑 , 2π‘˜1 + 𝑑 + 1, ⏞
(π‘š,
π‘šπ‘šπ‘–π‘‘ , β‹― , π‘šπ‘šπ‘–π‘‘ ), 𝑑 = 1, β‹― , (π‘š βˆ’ 2π‘˜1 βˆ’ 1)/2,
are minimal elements of π‘ŸΜ…π‘šπ‘–π‘› in πΉΜ‚π‘š (𝑛).
(2) If π‘š = 2𝑑 then
𝑛1
π‘›βˆ’π‘›1 βˆ’1
⏞ β‹― , π‘š, π‘š βˆ’ 𝑑 , π‘šπ‘šπ‘–π‘‘ + 𝑑 + 1, ⏞
(π‘š,
π‘šπ‘šπ‘–π‘‘ , β‹― , π‘šπ‘šπ‘–π‘‘ ) 𝑑 = 1, β‹― , (π‘š βˆ’ π‘šπ‘šπ‘–π‘‘ βˆ’ 1)/2,
are minimal elements of π‘ŸΜ…π‘šπ‘–π‘› in πΉΜ‚π‘š (𝑛).
The proof is obtained by an analogous reasoning as in Theorem 1.
3. Highest rank
In this section we determine a characterization of highest rank minimal elements
of πΉΜ‚π‘š (𝑛).
Let π‘š be given in the following canonical representation form:
π‘š = 𝐢𝑛𝑛 + πΆπ‘›π‘›βˆ’1 + β‹― + πΆπ‘›π‘›βˆ’π‘˜ + π‘š1 , π‘š1 < πΆπ‘›π‘›βˆ’π‘˜βˆ’1
(5)
Μ‚π‘š (𝑛), be defined as in [12]:
Let the highest rank π‘Ÿπ‘šπ‘Žπ‘₯ of maximal elements of 𝐷
π‘Ÿπ‘šπ‘Žπ‘₯ = βˆ‘π‘˜π‘–=0((𝑛 βˆ’ 𝑖) βˆ™ πΆπ‘›π‘›βˆ’π‘– ) + (𝑛 βˆ’ π‘˜ βˆ’ 1) βˆ™ π‘š1 .
Μ‚π‘š (𝑛) of the rank π‘Ÿπ‘šπ‘Žπ‘₯ . π·π‘šπ‘Žπ‘₯
Let π·π‘šπ‘Žπ‘₯ denote the class of maximal elements of 𝐷
defines the set of degree sequences of that class of hypergraphs which have 𝐢𝑛𝑛 +
πΆπ‘›π‘›βˆ’1 + β‹― + πΆπ‘›π‘›βˆ’π‘˜ common hyperedges (the subsets of [𝑛] of cardinalities 𝑛, 𝑛 βˆ’
1, β‹― , 𝑛 βˆ’ π‘˜) and differ only in the remaining π‘š1 hyperedges (the (𝑛 βˆ’ π‘˜ βˆ’ 1)π‘š1
subsets of [𝑛]). Thus, |π·π‘šπ‘Žπ‘₯ | = 𝐢𝐢 π‘›βˆ’π‘˜βˆ’1
. The components of all π‘‘π‘šπ‘Žπ‘₯ ∈ π·π‘šπ‘Žπ‘₯
𝑛
250
Hasmik Sahakyan
π‘›βˆ’π‘–βˆ’1
are calculated as follows: 𝑑𝑖 = βˆ‘π‘˜π‘–=0 πΆπ‘›βˆ’1
+ 𝑠𝑖 , where (𝑠1 , β‹― , 𝑠𝑛 ) defines the
set of hypergraphic sequences for (𝑛 βˆ’ π‘˜ βˆ’ 1)-uniform hypergraphs with π‘š1
edges.
Theorem 3.
Let π‘š = 𝐢𝑛𝑛 + πΆπ‘›π‘›βˆ’1 + β‹― + πΆπ‘›π‘›βˆ’π‘˜ + π‘š1 , π‘š1 < πΆπ‘›π‘›βˆ’π‘˜βˆ’1.
π‘˜
a) If π‘š1 β‰₯ 1 + βˆ’ π‘˜ βˆ’ 1, then π‘ŸΜ…π‘šπ‘Žπ‘₯ = π‘Ÿπ‘šπ‘Žπ‘₯ + 1.
𝑛
π‘˜
b) If π‘š1 < 1 + 𝑛 βˆ’ π‘˜ βˆ’ 1, then π‘ŸΜ…π‘šπ‘Žπ‘₯ ≀ π‘Ÿπ‘šπ‘Žπ‘₯ .
Proof.
a) It is easy to check that there is a sequence 𝑑 β€² = (𝑑1 , β‹― , 𝑑𝑛 ) in π·π‘šπ‘Žπ‘₯ such that
𝑑1 β‰₯ β‹― β‰₯ π‘‘π‘›βˆ’1 > 𝑑𝑛 (we can always choose π‘š1 hyperedges such that 𝑠1 β‰₯ β‹― β‰₯
π‘ π‘›βˆ’1 > 𝑠𝑛 ). Consider 𝑑̅ β€² = (𝑑1 , β‹― , π‘‘π‘›βˆ’1 , 𝑑𝑛 + 1) , which belongs to πΉΜ‚π‘š (𝑛). All
elements covered by 𝑑̅ β€² are either flatter than 𝑑′ or permutations of 𝑑 β€² and, thus,
Μ‚π‘š (𝑛). Therefore 𝑑̅′ is a minimal element of the rank π‘Ÿπ‘šπ‘Žπ‘₯ + 1 in
belong to 𝐷
Μ‚ belong to πΉΜ‚π‘š (𝑛), there is no
πΉΜ‚π‘š (𝑛). Since all elements of the rank π‘Ÿπ‘šπ‘Žπ‘₯ + 1 in 𝐻
Μ‚
minimal element of πΉπ‘š (𝑛) of rank higher than π‘Ÿπ‘šπ‘Žπ‘₯ + 1. Thus π‘ŸΜ…π‘šπ‘Žπ‘₯ = π‘Ÿπ‘šπ‘Žπ‘₯ + 1.
b)
This case is obvious.
4. Concluding remarks
Μ‚ depending
The last section gives estimates on the lowest and highest ranks in 𝐻
on parameter π‘š and brings several concluding remarks.
As it was stated above all sequences in π‘š with ranks lower than π‘ŸΜ…π‘šπ‘–π‘› are
Μ‚ with ranks higher than π‘Ÿπ‘šπ‘Žπ‘₯ are nonhypergraphic and all sequences in 𝐻
Μ‚π‘š (𝑛) and all minimal elements of
hypergraphic. Hence all maximal elements of 𝐷
Μ‚
πΉπ‘š (𝑛) have ranks ranging between π‘ŸΜ…π‘šπ‘–π‘› and π‘Ÿπ‘šπ‘Žπ‘₯ + 1, and, thus, are located
Μ‚ . An illustration of the upper hypergraphic
between π‘ŸΜ…π‘šπ‘–π‘› and π‘Ÿπ‘šπ‘Žπ‘₯ + 1 levels of 𝐻
Μ‚ for 𝑛 = 3 and π‘š = 4 is given in Figure 3.
and non-hypergraphic sequences in 𝐻
Μ‚π‘š (𝑛) = {(3,3,3),
𝐷
(4,2,2), (3,3,2), (3,2,3), (2,4,2), (2,3,3), (2,2,4),
(3,2,2), (2,3,2), (2,2,3),
(2,2,2)}.
Μ‚π‘š (𝑛) are: (3,3,3), (4,2,2), (2,4,2), (2,2,4).
Maximal elements of 𝐷
πΉΜ‚π‘š (𝑛) = {(4,4,4),
(4,4,3), (4,3,4), (3,4,4),
(4,4,2), (4,3,3), (4,2,4), (3,4,3), (3,3,4), (2,4,4),
(4,3,2), (4,2,3), (3,4,2), (3,2,4), (2,4,3), (2,3,4)}.
Maximal elements of πΉΜ‚π‘š (𝑛) are: (4,3,2), (4,2,3), (3,4,2), (3,2,4), (2,4,3), (2,3,4).
And thus π‘Ÿπ‘šπ‘–π‘› = 8, π‘Ÿπ‘šπ‘Žπ‘₯ = 9, π‘ŸΜ…π‘šπ‘–π‘› = 9 and π‘ŸΜ…π‘šπ‘Žπ‘₯ = 9.
On the set of simple hypergraph degree sequences
251
Μ‚ : the lowest level consists
We consider the lowest, highest and middle levels in 𝐻
of the lowest element (π‘šπ‘šπ‘–π‘‘ , β‹― , π‘šπ‘šπ‘–π‘‘ ), the highest level consists of the highest
element (π‘š, β‹― , π‘š) and the middle level consists of all elements of the rank
𝑛 βˆ™ (π‘š + π‘šπ‘šπ‘–π‘‘ )/2, particularly it contains the element ((π‘š + π‘šπ‘šπ‘–π‘‘ )/2, β‹― , (π‘š +
π‘šπ‘šπ‘–π‘‘ )/2).
Next we shall examine the distance of π‘ŸΜ…π‘šπ‘–π‘› and π‘Ÿπ‘šπ‘Žπ‘₯ ranks/levels from the lowest,
Μ‚.
middle and highest levels of 𝐻
First distinguish the following cases for π‘ŸΜ…π‘šπ‘–π‘› :
a) If 2π‘‘βˆ’1 < π‘š < 2𝑑 for some 𝑑 ≀ 𝑛, then:
π‘šβˆ’π‘‘
π‘‘βˆ’1
⏞ β‹― , π‘š, 2π‘‘βˆ’1 + 1, ⏞
π‘‘Μ…π‘šπ‘–π‘› = (π‘š,
π‘šπ‘šπ‘–π‘‘ , β‹― , π‘šπ‘šπ‘–π‘‘ )
π‘ŸΜ…π‘šπ‘–π‘› = (𝑛 βˆ’ 𝑑) βˆ™ π‘š + 2π‘‘βˆ’1 + (𝑑 βˆ’ 1) βˆ™ π‘šπ‘šπ‘–π‘‘ + 1
Μ‚ will be:
The distance from the lowest level in 𝐻
π‘š
π‘š
π‘ŸΜ…π‘šπ‘–π‘› βˆ’ π‘Ÿ(π‘šπ‘šπ‘–π‘‘ , β‹― , π‘šπ‘šπ‘–π‘‘ ) β‰ˆ (𝑛 βˆ’ 𝑑) βˆ™ + (2π‘‘βˆ’1 βˆ’ + 1) =
2
2
π‘š
π‘‘βˆ’1
βˆ™ (𝑛 βˆ’ 𝑑 βˆ’ 1) + 2
+1
2
Μ‚ will be:
The distance from the middle level in 𝐻
π‘š
π‘ŸΜ…π‘šπ‘–π‘› βˆ’ π‘Ÿ((π‘š + π‘šπ‘šπ‘–π‘‘ )/2, β‹― , (π‘š + π‘šπ‘šπ‘–π‘‘ )/2) β‰ˆ (𝑛 βˆ’ 𝑑) βˆ™ 4 βˆ’ (𝑑 βˆ’ 1) βˆ™
π‘š
4
+ 2π‘‘βˆ’1 + 1 βˆ’ 3π‘š/4 =
π‘š
4
βˆ™ (𝑛 βˆ’ 2𝑑 βˆ’ 2) + 2π‘‘βˆ’1 + 1.
b) If π‘š = 2𝑑 for some 𝑑, then:
π‘šβˆ’π‘‘
π‘‘βˆ’1
⏞ β‹― , π‘š, π‘šπ‘šπ‘–π‘‘ + 1, ⏞
π‘‘Μ…π‘šπ‘–π‘› = (π‘š,
π‘šπ‘šπ‘–π‘‘ , β‹― , π‘šπ‘šπ‘–π‘‘ )
π‘ŸΜ…π‘šπ‘–π‘› = (𝑛 βˆ’ 𝑑) βˆ™ π‘š + 𝑑 βˆ™ π‘šπ‘šπ‘–π‘‘ + 1
The distance from the lowest level will be:
π‘ŸΜ…π‘šπ‘–π‘› βˆ’ π‘Ÿ(π‘šπ‘šπ‘–π‘‘ , β‹― , π‘šπ‘šπ‘–π‘‘ ) β‰ˆ
π‘š
βˆ™ (𝑛 βˆ’ 𝑑) + 1
2
The distance from the middle level will be:
π‘ŸΜ…π‘šπ‘–π‘› βˆ’ π‘Ÿ((π‘š + π‘šπ‘šπ‘–π‘‘ )/2, β‹― , (π‘š + π‘šπ‘šπ‘–π‘‘ )/2) β‰ˆ (𝑛 βˆ’ 𝑑) βˆ™
π‘š
4
βˆ™ (𝑛 βˆ’ 2𝑑) + 1.
π‘š
4
βˆ’π‘‘βˆ™
π‘š
4
+1=
Μ‚ with
As we see in both cases π‘ŸΜ…π‘šπ‘–π‘› goes up from the lowest level in 𝐻
decrease of π‘š.
252
Hasmik Sahakyan
π‘›βˆ’π‘–βˆ’1
Now we estimate the case of π‘Ÿπ‘šπ‘Žπ‘₯ . We have π‘Ÿπ‘šπ‘Žπ‘₯ = 𝑛 βˆ™ βˆ‘π‘˜π‘–=0 πΆπ‘›βˆ’1
+ π‘š1 βˆ™
(𝑛 βˆ’ π‘˜ βˆ’ 1).
π‘›βˆ’π‘–βˆ’1
π‘›βˆ’π‘˜βˆ’1
a)
π‘š1 = 0. π‘š = βˆ‘π‘˜π‘–=0 πΆπ‘›π‘›βˆ’π‘– = 2 βˆ™ βˆ‘π‘˜βˆ’1
+ πΆπ‘›βˆ’1
, and thus π‘šπ‘šπ‘–π‘‘ =
𝑖=0 πΆπ‘›βˆ’1
π‘˜βˆ’1 π‘›βˆ’π‘–βˆ’1
π‘›βˆ’π‘˜βˆ’1
βˆ‘π‘–=0 πΆπ‘›βˆ’1 + πΆπ‘›βˆ’1 /2.
On the other hand, all components of π‘‘π‘šπ‘Žπ‘₯ are:
π‘›βˆ’π‘–βˆ’1
𝑑𝑖 = βˆ‘π‘˜π‘–=0 πΆπ‘›βˆ’1
.
Μ‚ element is:
The distance from the lowest level in 𝐻
π‘›βˆ’π‘˜βˆ’1
π‘Ÿπ‘šπ‘Žπ‘₯ βˆ’ π‘Ÿ(π‘šπ‘šπ‘–π‘‘ , β‹― , π‘šπ‘šπ‘–π‘‘ ) = πΆπ‘›βˆ’1 βˆ™ 𝑛/2.
The distance from the highest level is:
π‘›βˆ’π‘–βˆ’1
π‘›βˆ’π‘˜βˆ’1
π‘Ÿ(π‘š, β‹― , π‘š) βˆ’ π‘Ÿπ‘šπ‘Žπ‘₯ = 𝑛 βˆ™ (2 βˆ™ βˆ‘π‘˜βˆ’1
+ πΆπ‘›βˆ’1
)βˆ’
𝑖=0 πΆπ‘›βˆ’1
π‘˜
π‘˜βˆ’1 π‘›βˆ’π‘–βˆ’1
π‘›βˆ’π‘–βˆ’1
𝑛 βˆ™ βˆ‘π‘–=0 πΆπ‘›βˆ’1 = 𝑛 βˆ™ βˆ‘π‘–=0 πΆπ‘›βˆ’1 .
π‘›βˆ’π‘–βˆ’1
π‘›βˆ’π‘˜βˆ’1
b)
π‘š1 > 0. π‘š = βˆ‘π‘˜π‘–=0 πΆπ‘›π‘›βˆ’π‘– + π‘š1 = 2 βˆ™ βˆ‘π‘˜βˆ’1
+ πΆπ‘›βˆ’1
+ π‘š1 , and
𝑖=0 πΆπ‘›βˆ’1
π‘˜βˆ’1 π‘›βˆ’π‘–βˆ’1
π‘›βˆ’π‘˜βˆ’1
thus π‘šπ‘šπ‘–π‘‘ = βˆ‘π‘–=0 πΆπ‘›βˆ’1 + (πΆπ‘›βˆ’1 + π‘š1 )/2.
The distance from the lowest level is:
π‘š
π‘›βˆ’π‘˜βˆ’1 𝑛
π‘Ÿπ‘šπ‘Žπ‘₯ βˆ’ π‘Ÿ(π‘šπ‘šπ‘–π‘‘ , β‹― , π‘šπ‘šπ‘–π‘‘ ) = πΆπ‘›βˆ’1
βˆ™ 2 + π‘š1 βˆ™βˆ™ (𝑛 βˆ’ π‘˜ βˆ’ 1) βˆ’ 𝑛 βˆ™ 21 =
𝑛
𝑛
π‘›βˆ’π‘˜βˆ’1
πΆπ‘›βˆ’1
βˆ™ 2 + π‘š1 ( 2 βˆ’ π‘˜ βˆ’ 1).
The distance from the highest level is:
π‘›βˆ’π‘–βˆ’1
𝑛 βˆ™ βˆ‘π‘˜βˆ’1
βˆ’ π‘š1 βˆ™ (𝑛 βˆ’ π‘˜ βˆ’ 1).
𝑖=0 πΆπ‘›βˆ’1
Μ‚ depending on
Thus we have determined the layouts of π‘Ÿπ‘šπ‘Žπ‘₯ and π‘ŸΜ…π‘šπ‘–π‘› in 𝐻
parameter π‘š. The obtained formulas show when π‘Ÿπ‘šπ‘Žπ‘₯ and π‘ŸΜ…π‘šπ‘–π‘› are close, or when
π‘ŸΜ…π‘šπ‘–π‘› is greater than the middle rank depending on π‘š, etc.
References
[1] L. A. Aslanyan, Isoperimetry problem and related extremal problems of
discrete spaces, Problemy Kibernet. 36 (1979) 85-126.
[2] L. Aslanyan, H. Danoyan, Complexity of Hash-Coding type search algorithms
with perfect codes, Journal of Next Generation Information Technology (JNIT),
Volume 5, Number 4, November 2014, 26-35.
[3] L. Aslanyan, H. Danoyan, On the optimality of the Hash-Coding type nearest
neighbour search algorithm”, Selected Revised Papers of 9th CSIT conference,
submited to IEEE Xplore, 2013.
http://dx.doi.org/10.1109/csitechnol.2013.6710336
[4] L. Aslanyan, H. Sahakyan, Numerical characterization of n-cube subset
partioning, Electronic Notes in Discrete Mathematics, Volume 27, Pages 3-4/10,
October 2006, Elsevier B.V.,ODSA 2006 -Conference on Optimal Discrete
Structures and algorithms. http://dx.doi.org/10.1016/j.endm.2006.08.027
On the set of simple hypergraph degree sequences
253
[5] C. Berge, Hypergraphs. North Holland, Amsterdam, 1989.
[6] N. L. Bhanu Murthy and Murali K. Srinivasan, The polytope of degree
sequences of hypergraphs. Linear algebra and its applications, 350 (2002), 147170. http://dx.doi.org/10.1016/s0024-3795(02)00272-0
[7] D. Billington, Lattices and Degree Sequences of Uniform Hypergraphs. Ars
Combinatoria, 21A, 1986, 9-19.
[8] D. Billington, Conditions for degree sequences to be realisable by 3-uniform
hypergraphs, 1988.
[9] C. J. Colbourn, W. L. Kocay, and D. R. Stinson, Some NP-complete problems
for hypergraph degree sequences, Discrete Applied Maths. 14 (1986), 239-254.
http://dx.doi.org/10.1016/0166-218x(86)90028-4
[10] W. Kocay, P. C. Li, On 3-hypergraphs with equal degree sequences, Ars
Combin. 82 (2007), 145-157.
[11] H. Sahakyan, Numerical characterization of n-cube subset partitioning,
Discrete Applied Mathematics 157 (2009) 2191-2197.
http://dx.doi.org/10.1016/j.dam.2008.11.003
[12] H. Sahakyan, Essential points of the n-cube subset partitioning
characterization, Discrete Applied Mathematics 163, Part 2 (2014) 205-213.
http://dx.doi.org/10.1016/j.dam.2013.07.015
[13] H. Sahakyan, (0, 1)-matrices with different rows, Selected Revised Papers of
9th CSIT conference, submited to IEEE Xplore, 2013.
http://dx.doi.org/10.1109/csitechnol.2013.6710342
[14] R. Steven, Lattices and Ordered Sets, 2008, ISBN 0-387-78900-2, 305.
http://dx.doi.org/10.1007/978-0-387-78901-9
Received: December 1, 2014; Published: January 3, 2015