Mean Shift 算法原理和在目标跟踪上的应用 Agenda • Mean Shift Theory • What is Mean Shift ? • Density Estimation Methods • Deriving the Mean Shift • Mean shift properties • Applications • Clustering • Discontinuity Preserving Smoothing • Object Contour Detection • Segmentation • Object Tracking Mean Shift Theory Intuitive Description Region of interest Center of mass Mean Shift vector Objective : Find the densest region Distribution of identical billiard balls Intuitive Description Region of interest Center of mass Mean Shift vector Objective : Find the densest region Distribution of identical billiard balls Intuitive Description Region of interest Center of mass Mean Shift vector Objective : Find the densest region Distribution of identical billiard balls Intuitive Description Region of interest Center of mass Mean Shift vector Objective : Find the densest region Distribution of identical billiard balls Intuitive Description Region of interest Center of mass Mean Shift vector Objective : Find the densest region Distribution of identical billiard balls Intuitive Description Region of interest Center of mass Mean Shift vector Objective : Find the densest region Distribution of identical billiard balls Intuitive Description Region of interest Center of mass Objective : Find the densest region Distribution of identical billiard balls 研究现状 Mean shift算法是Fukunaga于1975年提出的, 其含义即偏移的均值向量。随着Mean shift理论的 发展,它的含义也发生了变化。现在一般是指一 个迭代的步骤,即先算出当前点的偏移均值,移 动该点到其偏移均值,然后以此为新的起始点,继 续移动,直到满足一定的条件结束。Cheng Yizong定义了一族核函数 ,将Mean shift算法引入 到计算机视觉领域。Bradski G R对Mean shift算 法进行改进,发展建立了Camshift算法,将Mean shift方法扩展应用到了目标跟踪中来。 Mean shift的基本形式 给定d维空间 R d 中的n个样本点,i=1,…,n,在点 x 的Mean Shift向量的基本形式定义为: 1 Mh x k x xi Sh i x 其中,S h 是一个半径为h的高维球区域, k表 示在这n个样本点中,有k个点落入区域 S h 中. Mean shift的扩展 核函数: 代表一个d维的欧氏空间, x 是该空间中的一 个点,用一列向量表示。 x 的模 x x x 。 R 表示实数域。如果一个函数 K : X R存在一个剖 面函数 k : 0, R ,即 X 2 K ( x) k x 2 剖面函数的性质: (1)k 是非负的 ; (2)k 是非增的; k (3) 是分段连续的,并且 0 k (r )dr T Kernel Density Estimation Various Kernels 1 n P ( x) K ( x - x i ) n i 1 例: 在选定的空间中,x1…xn 是有限的样本点。 c 1 x • Epanechnikov Kernel K E (x) 0 2 x 1 otherwise • Uniform Kernel (均匀核函数) c x 1 KU (x) 0 otherwise • Normal Kernel (高斯核函数) 1 2 K N (x) c exp x 2 核密度 估计 梯度 1 n P(x) K ( x - xi ) n i 1 使用核函数 的形式: 得到 : x - xi K (x - xi ) ck h 2 窗宽带宽 n xi gi 2c n c n P ( x ) ki g i g i 1n x nh i 1 n i 1 gi i 1 g(x) k (x) Computing The Mean Shift n x g i i c n c n i 1 P ( x ) ki g i n x n i 1 n i 1 gi i 1 Yet another Kernel density estimation ! Simple Mean Shift procedure: • Compute mean shift vector n x - xi 2 xi g h i 1 x m ( x) 2 n x x i g h i 1 •Translate the Kernel window by m(x) g(x) k (x) Non-Rigid Object Tracking … … Mean-Shift Object Tracking General Framework: Target Representation Choose a reference model in the current frame … Current frame Choose a feature space … Represent the model in the chosen feature space Mean-Shift Object Tracking General Framework: Target Localization Start from the position of the model in the current frame Search in the model’s neighborhood in next frame Find best candidate by maximizing a similarity func. Repeat the same process in the next pair of frames … Model Candidate Current frame … Mean-Shift Object Tracking Target Representation Choose a reference target model Represent the model by its PDF in the feature space Choose a feature space 0.35 Quantized Color Space Probability 0.3 0.25 0.2 0.15 0.1 0.05 0 1 2 3 . color Kernel Based Object Tracking, by Comaniniu, Ramesh, Meer . . m Mean-Shift Object Tracking Target Model Target Candidate (centered at 0) (centered at y) 0.35 0.3 0.3 0.25 0.25 Probability Probability PDF Representation 0.2 0.15 0.1 0.2 0.15 0.1 0.05 0.05 0 0 1 2 3 . . . m 1 2 color q qu u 1..m 3 . . . m color m q u 1 u 1 Similarity f y f q , p y Function: p y pu y u 1..m m p u 1 u 1 Mean-Shift Object Tracking Finding the PDF of the target model xi i1..n candidate model Target pixel locations y 0 k ( x) A differentiable, isotropic, convex, monotonically decreasing kernel b( x ) The color bin index (1..m) of pixel x • Peripheral pixels are affected by occlusion and background interference Probability of feature u in model b ( xi ) u y xi pu y Ch k h b ( xi ) u 2 k xi 0.3 0.3 0.25 0.25 0.2 Pixel weight 0.15 0.1 Normalization factor Probability Normalization factor Probability qu C Probability of feature u in candidate Pixel weight 0.1 0 0 1 2 3 . color . . m 0.2 0.15 0.05 0.05 2 1 2 3 . color . . m Mean-Shift Object Tracking Similarity Function Target model: q q1 , , qm Target candidate: p y p1 y , Similarity function: f y f p y , q ? , pm y The Bhattacharyya Coefficient q q1 , , qm p1 y , p y q 1 , pm y y 1 m p y q f y cos y pu y qu p y q u 1 T p y Mean-Shift Object Tracking Target Localization Algorithm Start from the position of the model in the current frame q Search in the model’s neighborhood in next frame p y Find best candidate by maximizing a similarity func. f p y , q Mean-Shift Object Tracking Approximating the Similarity Function m f y pu y qu u 1 Linear approx. (around y0) Model location: y0 Candidate location: 1 m 1 m f y pu y0 qu pu y 2 u 1 2 u 1 y qu pu y0 y xi pu y Ch k h b ( xi ) u Independent of y Ch 2 y xi wi k h i 1 n 2 2 Density estimate! (as a function of y) Mean-Shift Object Tracking Maximizing the Similarity Function The mode of Ch 2 y xi wi k h i 1 n Important Assumption: The target representation provides sufficient discrimination One mode in the searched neighborhood 2 = sought maximum Mean-Shift Object Tracking Applying Mean-Shift The mode of Ch 2 y xi wi k h i 1 2 n = sought maximum y0 xi 2 xi g h i 1 y1 n y0 xi 2 g h i 1 n n y xi Original Find mode of c k h Mean-Shift: i 1 2 using y0 xi 2 xi wi g 2 h i 1 y xi y using 1 2 n y0 xi h wi g h i 1 n Extended Find mode of c wi k Mean-Shift: i 1 n Mean-Shift Object Tracking About Kernels and Profiles A special class of radially symmetric kernels: K x ck x 2 The profile of kernel K k x g x y0 xi 2 xi wi g 2 h i 1 y xi y using 1 2 n y0 xi h wi g h i 1 n Extended Find mode of c wi k Mean-Shift: i 1 n Mean-Shift Object Tracking Choosing the Kernel A special class of radially symmetric kernels: Epanechnikov kernel: 1 x if x 1 k x 0 otherwise y0 xi 2 xi wi g h i 1 y1 n y0 xi 2 wi g h i 1 K x ck x 2 Uniform kernel(单位均匀核函数): 1 if x 1 g x k x 0 otherwise n n y1 xw i 1 n i i w i 1 i Mean-Shift Object Tracking Adaptive Scale Problem: The scale of the target changes in time The scale (h) of the kernel must be adapted Solution: Run localization 3 times with different h Choose h that achieves maximum similarity 完 谢谢
© Copyright 2026 Paperzz