Exploration of the Triplet Parameter Space Leon van Riesen-Haupt (JAI Oxford) on behalf of the JAI FCC Team 7th November 2016 EuroCirCol WP3 JAI updates, 31 March 2016 2 Shortening Inner Triplet • Minimise the size of the inner triplet – – – – Save space Reduce chromaticity Easier correction scheme Cheaper • Keep sufficient beam stay clear • Initial design (early 2016) – ~ 𝟒𝟎 𝝈 beam stay clear – ~140 m long – 10 m gaps between magnets Exploration of the Triplet Parameter Space, 7th November 2016 3 Inner Triplet 𝒈𝟏 𝒈𝟐 𝒈𝟑 0 𝑥𝐼𝑃 ′ 0 𝑥𝑒𝑥𝑖𝑡 ′ 𝑚11 𝑚21 𝑚12 𝑚22 𝒍𝟐 𝒍𝟏 • Simplified approach: 𝒍𝟒 1.8 1.6 – Using thin lenses – Point-to-point focusing x y 1.4 1.2 x and y / m • 𝒎𝒙𝟏𝟐 = 𝒎𝒚𝟏𝟐 = 𝟎 – Two constraints • Analytical solution 1 0.8 0.6 0.4 – Work out lens strength for fixed spatial layout – Iterate through many configurations quickly Exploration of the Triplet Parameter Space, 7th November 2016 𝒍𝟑 0.2 0 -0.2 0 200 400 800 600 S/m 4 1000 1200 1400 Figure of Merit • Figure of Merit (FOM): – • 𝒙𝒊 𝒍 𝒈𝒊 𝑸𝒊 Quadrupole Lengths – – 𝒍𝑸𝟏 = 𝒍𝑸𝟑 = 𝟐 × 𝒍𝟒 − 𝑳∗ 𝒍𝑸𝟐 = 𝟐 × 𝒍𝟑 − 𝒍𝑸𝟑 𝟐 𝒅 −𝒅 𝒍𝟏 • Thick lens PyMadX – – – Scan smaller area determined by fast scan Match accurately using MadX Work out stay clear using aperture module Exploration of the Triplet Parameter Space, 7th November 2016 5 𝒍𝟐 𝒍𝟑 𝒍𝟒 𝑳∗ Python Script Set total length and fix required beam stay clear, β*, L*, gaps and shielding Use PyMadX for small scan of accurate beam stay clear using current shielding (12 × 25 resolution) Find setup with largest beam stay clear If beam stay clear larger than required Plot ideal setup and output lengths + strengths Exploration of the Triplet Parameter Space, 7th November 2016 6 Increase total length Determine sensible range 𝑔 ± 0.005, 𝑙4 −2% + 8% If beam stay clear smaller than required Use fast FOM to scan large range in parameter space First attempt 70 m (12 𝝈, 𝜷∗ = 𝟎. 𝟑, 3 m gaps) Exploration of the Triplet Parameter Space, 7th November 2016 7 Optimising shielding Set required β*, L* and use initial shielding Integrate and match into machine for further studies Exploration of the Triplet Parameter Space, 7th November 2016 8 Use code to find shortest setup with good beam stay clear Use this setup for radiation studies of triplet Change shielding accordingly Work out shielding required for this setup Comparison to baseline Ilaria. Dose in nominal triplet (FCC week 2016) Exploration of the Triplet Parameter Space, 7th November 2016 9 Constraints Parameter Baseline Final Design Space Between Magnets 10 m 2m 𝜷∗ 0.3 m 0.3 m 𝑳∗ 45 m 45 m Peak dose profile, per 3000 fb-1 < 15 MGy < 15 MGy Beam Stay Clear 40 σ 15.5 σ Exploration of the Triplet Parameter Space, 7th November 2016 10 JAI Nov 2016 Triplet Parameter Baseline Final Design Space Between Magnets 10 m 2m 𝜷∗ 0.3 m 0.3 m 𝑳∗ 45 m 45 m Peak dose profile, per 3000 fb-1 < 15 MGy < 15 MGy Beam Stay Clear 40 σ 15.5 σ Shielding 15 mm 24.2 mm Triplet Length 138.5 m 95 m (of which is quadrupoles) 108.5 m 89 m Exploration of the Triplet Parameter Space, 7th November 2016 11 Comparison Exploration of the Triplet Parameter Space, 7th November 2016 12 Comparison 1600 1800 Wy 45 Wy 45 New 1400 1600 Wx 45 Wx 45 New 1400 1200 Wx Wy 1200 1000 1000 800 800 600 600 400 200 400 0 0 20000 40000 60000 80000 100000 0 S (m) Exploration of the Triplet Parameter Space, 7th November 2016 20000 40000 60000 S (m) 13 80000 100000 Comparison Ilaria. Dose in nominal triplet (FCC week 2016) Exploration of the Triplet Parameter Space, 7th November 2016 14 Conclusions • Wrote up an algorithm that helps find the optimum triplet layout for a set of constraints • Designed optics in collaboration with radiation studies • Used this to come up with an alternative design • In future we can use this to quickly find new designs satisfying requirements Exploration of the Triplet Parameter Space, 7th November 2016 15 Thank you! Different Shielding 12 σ Exploration of the Triplet Parameter Space, 7th November 2016 16 σ 17 19 σ Different Shielding Exploration of the Triplet Parameter Space, 7th November 2016 18 Chromaticity • 𝝏𝑸 𝝏𝜹 = 𝟏 𝟒𝝅 𝜷 𝒔 𝒌 𝒔 𝒅𝒔 – Larger 𝜷 and longer quads cause higher chromaticity – Larger L* forces 𝜷 to be larger and needs stronger focusing – Higher chromaticity requires more correction and takes more space – Try and keep triplet as short as possible Exploration of the Triplet Parameter Space, 7th November 2016 19 W functions for different L* 2500 Wx 36 Wx 45 Wx 61 Wx 2000 1500 1000 500 0 0 20000 40000 60000 S (m) Exploration of the Triplet Parameter Space, 7th November 2016 20 80000 100000 Aperture as a function of strength • So far assumed constant maximum strength: ap. R (mm) 50 60 70 80 90 100 110 120 130 – 𝑟𝑎𝑝𝑒𝑟𝑡𝑢𝑟𝑒 = 𝐵𝑀𝐴𝑋 𝑔 = 11 T 𝑔 • Received an email by Daniel Schoerling about the cold bore Exploration of the Triplet Parameter Space, 7th November 2016 21 w (mm) 25 28 33 35 38 40 43 45 48 G (T/m) 193 166 149 133 120 110 102 94 88 140 Accurate Aperture B/g Aperture Apperture (mm) 120 100 80 60 40 80 100 120 140 160 Gradient (T/m) Exploration of the Triplet Parameter Space, 7th November 2016 22 180 200 -2.0 Log(Aperture/m) -2.2 Equation y = a + b*x Weight Residual Sum of Squares Pearson's r No Weighting Adj. R-Squar 5.6075E4 -0.99967 0.99924 Value Log(Aperture Intercept /m) Slope -2.4 Standard Err 3.40813 0.05738 -1.2152 0.01188 -2.6 -2.8 -3.0 4.4 4.6 4.8 5.0 Log(Gradient/T/m) Exploration of the Triplet Parameter Space, 7th November 2016 23 5.2 5.4 Model • In future uses of my code I can update the aperture calculations • 𝐴 = 𝑒 𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 𝑔𝐺𝑟𝑎𝑑𝑖𝑒𝑛𝑡 = 29.96𝑔−1.215 m • Difference not significant to change previous designs • Previous designs probably discarded when iterating with Jose Exploration of the Triplet Parameter Space, 7th November 2016 24 140 Accurate Aperture B/g Aperture Model Apperture (mm) 120 100 80 60 40 80 100 120 140 Gradient (T/m) Exploration of the Triplet Parameter Space, 7th November 2016 25 160 180 200
© Copyright 2026 Paperzz