Function Mapping and Quantified Concept Evaluation

Function Mapping and
Quantified Concept Evaluation
Andy Williams Bsc (Hons), MSc, C.Eng, MIET
Lead Engineer –
System Integration & Functional Safety
Email [email protected]
UK Mob:
+44 7775 030 777
26th January 2017
© Copyright, Confidential, TMETC
Agenda
• ISO26262 Mapping to Internal Process
• Process & Tools
• Features, Systems, Items, Functions & Interfaces
• Re-use
• Analysing conceptual architectures
• System descriptions
• Quantifying Plausibility Cross-checks (PCc)
• Comparing multiple architectures
• Applications & benefits
© Copyright, Confidential, TMETC
2
FSwp_Safety_Case
ISO26262 (OEM Level) cross reference to NPI / TCDS
FScr_Safety_Case
refer to 2-6.4.7.1
confirmation of
2-6.5.3
Safety Case
2-6.5.3
Safety case
FScr_Validation_
Plan
FSwp_Safety_Plan
8-5.5.3
Project
Plan
FScr_FS_
Assessment
FScr_Item_
Integration_Test_
refer to 2-6.4.7.1
Plan
refer to 2-6.4.7.1
Confirmation of
4-5.5.4
Validation Plan
Task from
Safety
Plan
Confirmation of
4-5.5.3
Item integration and test
plan(s)
2-6.5.1
Safety Plan
FScr_Production_
Release
FScr_Safety_Plan
refer to 2-6.4.7.1
confirmation of
2-6.5.1
Safety Plan
FSwp_Item_Def
2-5.5.1
Organisational-specific
Rules and processes for
Functional Safety
FSwp_Validation_
Plan
4-5.5.4
Validation Plan
(Validate safety goals)
4-5.5.3
Item Integration and Test
Plan(S)
3-5.5
Item Definition
FSwp_Impact_A
FSwp_HARA
3-6.5.1
Impact Analysis
2-6.5..5
Functional Safety Audit
Input to
Safety
Case
2-6.5.5
Functional Safety Audit
i.e. Confirmation Measure
Reports
FSwp_Safety_Goals
3-7.5.1
Hazard Analysis
& Risk
Assessment
FSwp_Validation_
Spec
FSwp_Safety_
Concept
3-7.5.2
Determination
of Safety Goals
3-8.5.1
Functional Safety
Concept
(FSR’s)
3-8.5.1
Functional Safety
Concept
Validation
Specification
FSwp_Vehicle_
Verification_Spec
FSwp_Technical_SR
4-6.4.6.2
Validation Specification Safety Goals & Functional
Safety Requirements
4-6.5.1
Technical Safety
Requirements
Specification
2-6.5.4
Functional Safety
Assessment Plan
4-7.5.1
Technical
Safety
Concept
4-7.5.2
System Design
Specification
4-10.5.1
Functional Safety
Assessment Report
2-Annex E is Agenda
4-11.5.1
Release for production
Report
4-7.5.4
Requirements for Prod
Operation Service Test
Plan
Vehicle
Integration
4-8.5.2
Verification Specification vehicle Integration and
Test
FSwp_System_
Verification_Spec
Specification
FSvr_Technical_SR
FScr_HARA
FSvr_Safety_
Concept
2-5.5.2
Competence Analysis of
Staff
2-5.5.3
Quality Management
System review
FSwp_vehicle_
Integration_Report
FSvr_HARA_SG
4-6.5.2
Technical Safety
Requirements Verification
Report
4-9.4.3,4
Safety Validation
Report
refer to 2-6.4.7.1
Confirmation of
3-7.5.1
HARA
4-8.5.2
Verification Specification System Integration and
Test
4-7.5.5
Verification of System
design
3-6.5.2
Functional
Safety
Concept
Verification
Report
3-7.5.3
Hazard Analysis
and Safety Goals
Verification
Report
Safety
Case
4-7.5.6
Safety Analysis
Report
System Integration
Q_L3_EE_012
SystemSafetySOW
And
QMS 012_F1 System Safety
SOW Compliance V0.90
4-8.5.3
Vehicle Integration and
Testing
Report
4-11.5,1
Software and Hardware
Baseline
Report
FSwp_System_
Integration_Report
4-8.5.3
System Integration and
Testing
Report
FSwp_DIA_C#1
Reference
Supplier DIA Discussions
5-x.
Hardware Design
Guidelines
Specification
FScr_System_
Design
8-5.5.2
Development Interface
Agreement – Component
#1
Refer to 2-6.4.7.1
Confirmation of
4-7.5.5
System Design
5-x.
Hardware Design
Guidelines
Specification
Supplier Development
TML Audits
FSwp_HWSW_
Integration_Report
6-5.5.3
Design & Coding
Guidelines
Specification
DR0
TS
CS
DR1
AR
DR2
Hardware Software
Integration
Confirmation
Review
FScr_FS_
Assessment_C#1
2-6.5.5
Functional Safety Audit
i.e. Confirmation Measure
Reports
Task
4-8.5.3
Hardware-Software
Integration
Report
DR3
DR4
TCDS
NPI
6-5.5.4
Software Tool Application
Guidelines
© Copyright, Confidential, TMETC
3
Process and Tools
RMDV2 Feature
Requirements
PREEVISION
Function
Requirements
Validation
Verification
RMDV2 Feature
Validation
PREEVISION
Function
Verification
© Copyright, Confidential, TMETC
4
Vehicle Features to Vehicle Systems
Vehicle
Features
Powertrain
Engine
Gasoline
Diesel
Electric
Etc…
Energy Storage
HV Energy Store
Etc…
Transmission
Manual
Etc….
Platform
Platform X
X
X+ X++
Platform Y
Y
Y+ Y++












Gasoline ICE Engine System
Diesel ICE Engine System






HVES System






Etc…..
Vehicle Systems
© Copyright, Confidential, TMETC
5
Vehicle Systems to Items (treated as ISO26262 SEooC)
Vehicle Systems
Item - Sub-Systems
Functions
HV Energy Storage System
Cell monitoring
Cell voltage monitoring and control function
Cell voltage interface
Cell temperature monitoring and control
Cell temperature interface
Isolation monitoring
Resistance monitoring and control
Resistance Interface
HVESS Connect / Disconnect
Pre-charge monitoring and control
Pre-charge interface
Negative Contactor monitoring and control
Negative Contactor Interface
Positive Contactor monitoring and control
SEooC - Safety Elements out of Context
Positive Contactor Interface
© Copyright, Confidential, TMETC
6
Re-Use
Vehicle:
Modified
Feature
Sounds
Simple?
Impact
Analysis
No
Safety
Impact
100%
Re-Use
Safety
Impact
Partial
Re-Use
© Copyright, Confidential, TMETC
7
Re-Use
Vehicle
Features
Vehicle Features
Energy Storage
HVES System
Cell monitoring
Scope
Cell V mon & cntrl
Cell V i/f
Scope
Scope
HVES System
Energy Storage
HV Energy Store
Cell monitoring
Etc…
Cell V mon & cntrl
Vehicle
Antilock Braking (ABS)
FSidf_EPB_fn_1.2 Automatic Apply (1.2.1,1.2.2)
Emergency Stop Signal (panic brake)
FSidf_EPB_fn_1 Static Apply (1.1,1.1.1)
Park Brake
Primary Brakes
Gear Selection Module (GSM)
Electronic Stability Program (ESP)
Auto
Automated Manu al
Start Stop
Motor Control
Not An alysed
Not An alysed
Not An alysed
Not An alysed
X451 XE
X451 XM
X451 XT
X451 XT+
X451 XZ
X452 XE
X452 XM
X452 XT
X452 XT+
X452 XZ
Cell V i/f
Not An alysed
Not An alysed
FSwp_Item_Def for Electric park brake (EPB)
FSidf_EPB_fn_1 Static Apply
FSidf_EPB_fn_1.1 Manual Application
FSidf_EPB_fn_1.1.1 Drive request – control device
FSidf_EPB_fn_1.2 Automatic Apply
FSidf_EPB_fn_1.2.1 Auto Park
FSidf_EPB_fn_1.2.2 Auto hold
FSidf
FSidf
Fsidf_EPB_fn_5 Visual Status
Fsidf_EPB_fn_5.1 Applied / release status
Fsidf_EPB_fn_5.2 Fault status
FSidf
Chassis
Not An alysed
FSwp_Item_Def for Primary Brakes (PrB)
FSidf_PrB_fn_1 Brake Lights (ASIL B)
FSidf_PrB_fn_2 Interface Applied status (ASIL C)
These need
assessed attributes
-speed
-acceleration
-mass
-etc
Not An alysed
Function satisfies
feature ASIL target
Function does not satisfy
feature ASIL target
Not An alysed
Peregrin
Not An alysed
?
Not An alysed
Functions – x and x.y
QM target
ASIL A target
ASIL B target
ASIL C target
ASIL D target
Not An alysed
Not Analysed
QM qualified
ASIL A qualified
ASIL B qualified
ASIL C qualified
ASIL D qualified
Not An alysed
None of the ASIL ratings are correct –
examples only to show principle
Powertrain
Engine
Transmission
Electric / Hybrid
Vehicle Supervisory control unit (VSCU)
Vehicle Features
NPIP
TCDS
Idea / Wishlist
TS
CS
AR
DR0
DR1
DR2
DR3
DR4
C
Scope
C
C
Scope
Scope
Etc…
Etc…
Etc…
Etc…
Etc…
C


ASIL B
ASIL D
ASIL D
ASIL D
ASIL D
ASIL D
Not analysed
Not analysed
Not analysed
ASIL A
QM
Not analysed
© Copyright, Confidential, TMETC
8
Areas of Interest
 Functions
 All major functions for
 Monitoring
 Control
 Actuation
 Interface / Boundaries
 Item
Battery
 Element
Management
System
 Functions
Max Discharge Current (A)
State of Charge (%)
Inverter / Motor
Instrument
Cluster
© Copyright, Confidential, TMETC
9
Critical Points for Analysis
Connectors
Transducers –physical values to a voltage
Measurements – voltage measurement
Parameters – software variable to / from control algorithms
Data - signals between distributed systems
Outputs – the analogue or digital output from a controller
Actuators – physical control actuation
© Copyright, Confidential, TMETC
10
System Description
Transducer
T
M
Output = f(Input)
C
P
D
Driver Warning
C
O
A
 Connectors
 Transducers –physical values to a voltage
 Measurements – voltage measurement
 Parameters – software variable to / from control algorithms
 Data - signals between distributed systems
 Outputs – the analogue or digital output from a controller
 Actuators – physical control actuation
© Copyright, Confidential, TMETC
11
Isolation Tester Example
Resistance
Measurement
C
Isolation
Monitor
T
M
P
Driver Warning
D
O
C
A
In terms of
Signals /
Interface
Boundaries
Resistance
Measurement
T
Isolation
Monitor
isol_res_AI_MR
M
P
isol_res_MR
Driver Warning
D
O fault_led_DO_V A
D
D
isol_res_MR
isol_res_MR
Failure cannot violate safety goal
CAN Bus
D
Failure could violate safety goal
© Copyright, Confidential, TMETC
12
Expanding the System
String
P
Pack Controller
string1_V
D
P
P
string1_C
D
P
string1_SOC_pc
D
P
string1_chg_en
D
P
string1_dischg_en
D
A
C
string1_pos_DO_V
O
A
C
string1_neg_DO_V
O
String 2,3.....s
Power Distribution
Inverter
calc_pack_V
D
P
pack_V
D
P
calc_pack_C
D
O
pack_chg_en_DO_V
C
P
calc_pack_SOC_pc
D
P
pack_max_chg_V
D
P
calc_pack_SOH_pc
D
P
pack_max_chg_A
D
O
pack_dischg_en_DO_V
C
P
pack_dischg_en_DO_V
D
D
pack_max_dischg_A
D
P
pack_max_dischg_A
D
D
pack_min_dischg_V
D
P
pack_chg_en_DO_V
D
P
pack_max_chg_V
D
P
pack_max_chg_A
D
Charger
P
string’s’_V
D
D
pack_max_chg_V
D
P
string’s’_C
D
D
pack_max_chg_A
D
P
string’s’_SOC_pc
D
P
string’s’_chg_en
D
P
string’s’_dischg_en
D
A
C
string’s’_pos_DO_V
O
A
C
string’s’_neg_DO_V
O
M
meas_pack_AI_V
D
Isolation Monitor
C
meas_HV_AI_V
Etc…….
M
T
M
isol_res_AI_MR
P
D
isol_res_AI_MR
D
Driver Warning
P
O
fault_led_DO_V
A
© Copyright, Confidential, TMETC
13
Plausibility Cross-checks (PCc’s)
PCc – Prove the isolation resistance measurement
is correct by switching a known test resistance in
parallel with the nominal HV-chassis resistance
Isolation Monitor
M
P
STR_ISOL_RES_R
D
STR_ISOL_RES_R
PCC
P
P
STR_ISOL_STATUS
D
P
TEST_RES_EN
A
O
© Copyright, Confidential, TMETC
14
Best Architecture?
Isolation Monitor
C1
HVPOS_AI_V
M1
C2
HVNEG_AI_V
M2
T1
STR_ISOL_HV_V
STR_ISOL_HV_V
P
1
P
3
PCC1
Connections
String
PSU1
P1
D1
STR_ISOL_HV_V
D4
P6
D2
STR_ISOL_RES_R
D5
P7
D3
STR_ISOL_STATUS
D6
P8
PSU2
P
2
CAL_REF_WIN_V
P
3
STR_ISOL_STATUS
STR_ISOL_RES_R
P4
STR_ISOL_RES_R
P4
P5
PCC2
HVNEG_AI_V
STR_ISOL_STATUS
CAL_REF_WIN_R
P5
A1
P2
STR_ISOL_RES_MR
O1
P2
STR_ISOL_STATUS
TEST_RES_EN
CHASSIS_AI_V
P4
C3
P9
PCC3
CHASSIS_AI_V
P
2
Test resistor output in isolation monitor
© Copyright, Confidential, TMETC
15
The ASIL Attribute
HARA Provides
ASIL for each
safety goal
Item
Subsystem 1
Function 1.1
Function 1.2
Subsystem 2
Function 2.1
Function 2.2
Inherited ASIL
Inherited ASIL
Decomposition:
• Can be performed at a number of stages in the process
• Concept
• System Design
• Hardware Design
• Software architectural design
• Relies on independence / imposes additional requirements
© Copyright, Confidential, TMETC
16
ASIL Requirements Decomposition Can independence
be demonstrated?
Isolation Monitor
C1
HVPOS_AI_V
M1
C2
HVNEG_AI_V
M2
T1
STR_ISOL_HV_V
STR_ISOL_HV_V
P
1
P
3
PCC1
Connections
String
PSU1
P1
D1
STR_ISOL_HV_V
D4
P6
D2
STR_ISOL_RES_R
D5
P7
PSU2
P
2
CAL_REF_WIN_V
P
3
STR_ISOL_STATUS
STR_ISOL_RES_R
P4
P5
CAL_REF_WIN_R
P5
STR_ISOL_RES_MR
P2
P7
STR_ISOL_STATUS
P2
D3
STR_ISOL_STATUS
D6
P8
P9
A1
CHASSIS_AI_V
C3
CHASSIS_AI_V
O1
P
10
TEST_MEAS_FAILED
TEST_RES_EN
HVNEG_AI_V
CHASSIS_AI_V
PCC3
P4
PCC2
STR_ISOL_RES_R
P
10
P9
TEST_RES_EN
C4
Test resistor initiation moved to another controller
© Copyright, Confidential, TMETC
18
Concept Architecture Analysis
Information required:






Failure Rate – lumped value / representative scaling
Failure Mode – generic - signals / main components
Failure Mode Distribution – signals / main components
Safety Criticality – impact / no impact on safety goal
Diagnostic Coverage – achievable estimate based on standard
Diagnostic Coverage Confidence Levels – relates to the number and
type of diagnostic techniques used
© Copyright, Confidential, TMETC
20
Diagnostic Coverage
100%
60%
59%
D.11
Sensors including
Signal Switches
D.11
Sensors including
Signal Switches
D.11
Sensors including
Signal Switches
D.11
Sensors including
Signal Switches
D.11
High
99%
Medium
90%
Failure Mode
Distribution
Full Claim
PCc Claim
40%
24.00%
23.52%




y


Used
High
99%
Used
Medium
90%
Low
60%
Used
Sensors including
Signal Switches
Low
60%
High
99%
D.2.6.5
See Table
High
99%
Used
Element
Low
60%
D.2.6.1
Analysed Failure modes for low / medium / high
Diagnostic Coverage
Test Pattern
Input Comparison
Voting (1oo2, 2oo3
or better
redundancy). Only
Sensor rationality
Sensor valid range Sensor Correlation
if data flow
Check
changes within
diagnostic test
interval.
D.2.10.1
Electrical Elements- Sensors Including Signal Switches
Failure Detection
by on-line
monitoring
Used
Table D.11
26262-5: 2011
Available Techniques
No generic Fault
Model available.
No generic Fault
Model available.
No generic Fault
Model available.
Detaled Analysis
necessary
Detaled Analysis
necessary
Detaled Analysis
necessary
Out of range
Out of range
Out of range
25%
15.00%
14.70%




y
Offsets
Offsets
10%
6.00%
5.88%




y


Stuck in range
Stuck in range
20%
12.00%
11.76%




y


5%
3.00%
2.94%




y


Stuck in range
Oscillation
0%
0%
0%
60%
0%
Used
PCc Claim
D.2.10.3
Full Claim
D.2.10.2
Failure Mode Distribution
D.2.1.1
Reference
0%
Maximum claim for technique is 60%
© Copyright, Confidential, TMETC
21
Diagnostic Coverage
100%
99.00%
98.01%
Sensors including
Signal Switches
D.11
Sensors including
Signal Switches
D.11
Sensors including
Signal Switches
D.11
Sensors including
Signal Switches
D.11
Medium
90%
Failure Mode
Distribution
Full Claim
PCc Claim
40%
39.60%
39.20%



y

y


Used
High
99%
High
99%
Used
D.11
Medium
90%
Low
60%
D.2.10.1
Sensors including
Signal Switches
Low
60%
High
99%
Used
See Table
High
99%
Used
Element
Low
60%
D.2.6.1
Analysed Failure modes for low / medium / high
Diagnostic Coverage
Test Pattern
Input Comparison
Voting (1oo2, 2oo3
or better
redundancy). Only
Sensor rationality
Sensor valid range Sensor Correlation
if data flow
Check
changes within
diagnostic test
interval.
D.2.6.5
Electrical Elements- Sensors Including Signal Switches
Failure Detection
by on-line
monitoring
Used
Table D.11
26262-5: 2011
Available Techniques
No generic Fault
Model available.
No generic Fault
Model available.
No generic Fault
Model available.
Detaled Analysis
necessary
Detaled Analysis
necessary
Detaled Analysis
necessary
Out of range
Out of range
Out of range
25%
24.75%
24.50%



y

y
Offsets
Offsets
10%
9.90%
9.80%



y

y


Stuck in range
Stuck in range
20%
19.80%
19.60%



y

y


5%
4.95%
4.90%



y

y


Stuck in range
Oscillation
0%
Maximum claim for technique is 99%
0%
99%
60%
0%
Used
PCc Claim
D.2.10.3
Full Claim
D.2.10.2
Failure Mode Distribution
D.2.1.1
Reference
0%
Reduced confidence in PCc
as only 2 techniques used
© Copyright, Confidential, TMETC
22
Diagnostic Coverage
100%
99.00%
98.51%
Sensors including
Signal Switches
D.11
Sensors including
Signal Switches
D.11
Sensors including
Signal Switches
D.11
Sensors including
Signal Switches
D.11
Medium
90%
Failure Mode
Distribution
Full Claim
PCc Claim
40%
39.60%
39.40%


y

y

y


Used
High
99%
High
99%
Used
D.11
Medium
90%
Low
60%
D.2.10.1
Sensors including
Signal Switches
Low
60%
High
99%
Used
See Table
High
99%
D.2.6.5
Element
Low
60%
Used
Analysed Failure modes for low / medium / high
Diagnostic Coverage
Test Pattern
Input Comparison
Voting (1oo2, 2oo3
or better
redundancy). Only
Sensor rationality
Sensor valid range Sensor Correlation
if data flow
Check
changes within
diagnostic test
interval.
D.2.6.1
Electrical Elements- Sensors Including Signal Switches
Failure Detection
by on-line
monitoring
Used
Table D.11
26262-5: 2011
Available Techniques
No generic Fault
Model available.
No generic Fault
Model available.
No generic Fault
Model available.
Detaled Analysis
necessary
Detaled Analysis
necessary
Detaled Analysis
necessary
Out of range
Out of range
Out of range
25%
24.75%
24.63%


y

y

y
Offsets
Offsets
10%
9.90%
9.85%


y

y

y


Stuck in range
Stuck in range
20%
19.80%
19.70%


y

y

y


5%
4.95%
4.93%


y

y

y


Stuck in range
Oscillation
0%
Maximum claim for technique is 99%
99%
99%
60%
0%
Used
PCc Claim
D.2.10.3
Full Claim
D.2.10.2
Failure Mode Distribution
D.2.1.1
Reference
0%
Increased confidence in PCc
as additional techniques used
© Copyright, Confidential, TMETC
23
PCc - Combines DC Analysis
Low
High
Medium
Low
High
99%
99%
99%
60%
99%
90%
60%
99%
Failure Mode
Distribution
Full Claim
PCc Claim
Failure Mode Leads
to Violation of
Safety Goal
20%
20%
20%
y

y



y
10%
10%
10%
y

y



y

y

30%
30%
30%
y

y



y

y

5%
5%
5%
y

y



y

D.2.8.2
Used
y
Drift
Drift &
Oscillation
20%
20%
20%
y


y
5%
5%
5%
y


y
0.00%
34.65%
Power Spikes
64.35%
0.00%
0.00%
39.00%
Used

Out of range
Used

Out of range
Used
y
99%
Used
10%
90%
Used
10%
60%
Oscillation
D.9
High
10%
High
Sensors
Offsets
Offsets
including Signal D.11
Stuck
in
range
Stuck
in
range
Stuck in range
Switches
Power supply
High
Under and
Over Voltage
Medium
Under and
Over Voltage
High
Under and
Over Voltage
Low
Out of range
Test Pattern
Used
Analysed Failure modes for low / medium /
high Diagnostic Coverage
Failure Detection
by on-line
monitoring
D.2.10.1
Transducers
Input Comparison
Voting (1oo2, 2oo3
or better
redundancy). Only
Sensor rationality Voltage or current Voltage or current
Sensor valid range Sensor Correlation
if data flow
Check
control (input)
control (output)
changes within
diagnostic test
interval.
D.2.6.1
See
Table
Medium 100.00%
Used
Element
98.38%
D.2.8.1
Table
26262-5: 2011
High
Available Techniques
D.2.10.3
99.00%
SG Failure
Distribution
PCc Claim
D.2.10.2
100%
Full Claim
D.2.6.5
Failure Mode Distribution
D.2.1.1
Reference


39.60%
0.00%
For example: Transducer Analysis may cover signals and power supply
© Copyright, Confidential, TMETC
24
More Candidate PCc Architectures
C
Architecture 1)
Isolation
Monitoring
Stand Alone with
reference window
Isolation Monitor
hv_pos_AI_V
M
C
chassis_AI_V
M
C
hv_neg_AI_V
M
M
T
isol_res_MR
Pack Controller
P
Monitor
Driver Warning
O
fault_led_DO_V
isol_res_MR
P
PCC
Connections
P
P
CAL_ref_win_MR
fault_led_DO_V
P
P
A
O
fault_led_DO_V
isol_res_MR
M
C
chassis_AI_V
M
C
hv_neg_AI_V
M
Architecture 2)
Isolation
Monitoring
With Test
Resistance
Enable in
Isolation Monitor
M
isol_res_MR
P
P
hv_pos_AI_V
M
O
P
O
D
P
test_res_en_DO_V
M
fault_led_DO_V
PCC
Test Measure Failed
fault_led_DO_V
P
P
A
isol_res_MR
P
D
isol_res_MR
D
P
T
hv_pos_AI_V
A
chassis_AI_V
M
C
hv_neg_AI_V
M
hv_pos_AI_V
M
P
test_res_en_DO_V
O
P
chassis_AI_V
C
P
isol_res_MR
isol_res_MR
PCC
C
P
isol_res_MR
fault_led_DO_V
CAL_ref_win_MR
isol_res_MR
P
Architecture 3)
Isolation
Monitoring
With Test
Resistance
Enable in Pack
Controller
P
P
P
P
P
isol_res_MR
T
P
fault_led_DO_V
P
P
P
CAL_ref_win_MR
O
Test Measure Failed
PCC
hv_pos_AI_V
PCC
C
test_res_en_DO_V
fault_led_DO_V
P
O
P
O
P
D
P
A
fault_led_DO_V
isol_res_MR
hv_neg_AI_V
isol_res_MR
P
D
M
M
isol_
res_
MR
D
P
isol_res_MR
P
test_res_en_DO_V
P
P
P
P
P
P
P
test_res_en_DO_V
fault_led_DO_V
O
P
O
PCC
O
CAL_ref_win_MR
C
P
isol_res_MR
chassis_AI_V
chassis_AI_V
D
isol_res_MR
A
C
isol_res_MR
T
hv_pos_AI_V
Architecture 5)
Isolation Tester
With Test
Resistance and
Independent
Timing Monitor
M
PCC
C
PCC
4) Not Shown
P
fault_led_DO_V
CAL_st_time_s
P
P
Test Measure
Failed
P
O
fault_led_DO_V
A
fault_led_DO_V
P
O
P
fault_led_DO_V
© Copyright, Confidential, TMETC
25
Power Supply
Isolation Monitor Outputs
STR_ISOL_HV_V
STR_ISOL_RES_R
String Inputs
STR_ISOL_HV_V
STR_ISOL_RES_R
String Internal
STR_ISOL_HV_V
STR_ISOL_RES_R
Power Supply
Total FR (FIT)
Residual or Single Point
failure rate/FIT
Failure mode coverage
wrt violation of Safety
Goal, %
Safety mechanisms
allowing to prevent
violation of Safety Goal
Failure mode that can
violate safety goal w/o
safety mechanisms?
Failure rate distribution,
%
Safety Critical Failure rate
Safety Critical component
1)C1
1)C2
0.035325508
0.035325508
y
y
0.03532551
0.03532551
D.3
D.3
40%
40%
y
y
0.00%
0.00%
0.01413
0.01413
Measurement
Measurement
Connection
1)M1
1)M2
1)C3
4.9
4.9
0.035325508
y
Y
Y
4.9
4.9
0.03532551
D.3
D.3
D.3
40%
40%
40%
y
y
y
0.00%
0.00%
0.00%
1.96
1.96
0.01413
Transducer
1)T1
14.36735399
Y
14.367354
D.11
40%
y
0.00%
5.746942
Parameter
Parameter
1)P1
1)P2
4.460886003
4.460886003
Y
Y
4.460886
4.460886
D.9
D.9
40%
40%
40%
y
y
97.02%
97.02%
0.053218
0.053218
General - PSU
1)PSU1
12
Y
12
D.9
98.51%
0.07176
Data
Data
1)D1
1)D2
1.999540997
1.999540997
Y
Y
1.999541
1.999541
D.11
D.11
40%
40%
y
y
0.00%
0.00%
0.799816
0.799816
Data
Data
1)D3
1)D4
1.999540997
1.999540997
Y
Y
1.999541
1.999541
D.11
D.11
40%
40%
y
y
0.00%
0.00%
0.799816
0.799816
Parameter
Parameter
1)P3
1)P4
4.460886003
4.460886003
Y
Y
4.460886
4.460886
D.9
D.9
40%
40%
40%
y
y
97.02%
97.02%
0.053218
0.053218
General - PSU
1)PSU2
12
Y
12
D.9
98.51%
0.07176
Table
Connection
Connection
Failure Rate/FIT
Element Reference
Connections
HVPOS_AI_V
HVNEG_AI_V
Isolation Monitor Inputs
HVPOS_AI_V
HVNEG_AI_V
CHASSIS_AI_V
Isolation Monitor Internal
STR_ISOL_HV_V
STR_ISOL_RES_R
STR_ISOL_HV_V
STR_ISOL_RES_R
Element Classification
Signal Description
PCC - SPFM Calculation Example
y
y
PSU monitor
PSU monitor
Micro monitor of
supply
PSU monitor
PSU monitor
Micro monitor of
supply
74.115
Single Point Fault Metric
16 points to
analyse using
PCc as
opposed to 172
components
13.265
82.1%
© Copyright, Confidential, TMETC
26
Metrics Calculation Comparison
ASI
L
B
C
D
SPFM
90%
97%
99%
100.0%
ASIL
SPFM
LFM
98.0%
B
90%
60%
96.0%
C
97%
80%
94.0%
D
99%
90%
92.0%
90.0%
PCc
88.0%
FullDesign
86.0%
Description
84.0%
82.0%
1 Stand Alone
80.0%
0
1
2
3
4
5
6
2 Reference Window
96.0%
3 Self Test
94.0%
ASI
L
B
C
D
LFM
92.0%
60%
80%
90%
90.0%
4 Independent Self Test
PCc
FullDesign
88.0%
5 Independent Timed Self
Test
86.0%
84.0%
0
1
2
3
4
5
6
© Copyright, Confidential, TMETC
27
Applications
Battery Management System
 Complex system
 Number of safety goals
 Design ‘out of context’ – generic product
Isolation tester
 Simple system
 Known interface
Hybrid Bus
 Complex System
 Limited component / ECU data
 Applied PCc across decomposed systems to analyse integrity
© Copyright, Confidential, TMETC
28
PCc Analysis Benefits
 System Diagrams easily generated / understood
 Facilitates discussions to be held with customers / suppliers to identify possible
PCcs
 Allows multiple architectures to be compared quickly
 Fast method to analyse at the system level prior to detailed design
 Highlights architecture requirements early in the design process
 Identifies use of independent controllers – useful for decomposition
 Quantified approach so architecture comparison is straightforward
 Accurate prediction of potential SPFM and LFM
© Copyright, Confidential, TMETC
29
Further Work
 Improving rules for diagnostic coverage allocation
 Automatic linking of metrics based on attributes within function model
 Define attributes into model based design and look to calculate architectural
metrics automatically from models
© Copyright, Confidential, TMETC
30
Thank You
Andy Williams
[email protected]
© Copyright, Confidential, TMETC
31