THE DRIVERS OF INTERREGIONAL POLICY CHOICES: EVIDENCE FROM ITALY Fabio Padovano DIPES, Università Roma Tre, Roma, Italy and CREM-CNRS, Université de Rennes1, Rennes, France. Introduction - 1 New theoretical developments in literature on the determinants of transfers from CG to LG Bailing out expectations (Rodden, 2005; Bordignon & Turati, 2009; Josselin, Padovano and Rocaboy, 2009) Alignment effects (Dasgupta et al., 2002) ‘Too big to fail’ effects (Wildasin, 1997) Asymmetries in representation of local interests in national legislatures (Porto and Sanguinetti, 2001) Common pool situations (Persson and Tabellini, 2001) Soft budget constraints (Quian and Roland, 1998; Goodspeed, 2002) Introduction - 2 …to be added to ‘traditional political determinants’ Political budget cycles Local political capital (Grossman, 1994) Interest groups …and normative welfare economics theories provision of differentiated public goods to heterogeneous populations Common standards in basic services Race to the bottom 2 problems 1. 2. Degrees of freedom Institutional detail Solution to the first panel times series-cross section but: If cross section composed by a variety of countries loose on institutional precision Trade off between problem 1 and 2 How NOT to do it Avoiding institutional complexity creates inconsistencies between results (Feld and Schaltegger, CesIFO 2007 vs. Feld and Schaltegger, PC 2005 vs. Feld and Kirchgassner, RSUE 2001) Leviathan hypothesis literature another example (Oates, 1985; Rodden, 2003; Asworth, Galli and Padovano, 2008, 2009) Capturing institutional changes through dummies does not produce very satisfactory empirical specifications (Bordignon and Turati, 2009) Possible solutions Development of theoretical constructs that identify relevant institutional details (e.g. political economy of debt creation) more parsimonious specifications More cross country institutional data in this domain (like DPI) Selection of within country panels Minimize institutional variance Large data set Merits of Italian data set 20 regions 15 RSO and 5 RSS only institutional difference (stable) 1996-2006 no major changes in transfer policy No changes of expectations No further institutional change dummy 210 observations data set large enough to account for theoretical innovations Transfer policy historically important Bipartisan policy of progressive substitution of transfers with ‘own resources’ Health care main responsibility of regions (50% of regional expenditures, 70% net of administration) but there is also more worth looking at overall transfers Income per family, Italian Regions 1995-2000 95% confidence intervals, Source: BdI Age structure by Regions - 1 Regions Piedmont Population density (n/km2) Population by age 0-15 (%) >65 (%) 168 12,4 22,4 37 13,2 20,2 388 13,6 19,4 71 16,1 17,7 Veneto 253 13,9 19,2 Friuli Venezia Giulia 153 12 22,6 Liguria 291 11,1 26,5 Emilia Romagna 184 12,5 22,7 Tuscany 155 12,1 23,2 Umbria 100 12,5 23,3 Italy 192 14,1 19,7 Valle d'Aosta Lombardy Trentino Alto Adige Age structure by regions - 2 Regions Population density (n/km2) Population by age 0-15 (%) > 65 (%) Marche 155 13,1 22,6 Lazio 303 13,9 19,1 Abruzzo 119 13,4 21,3 Molise 72 13,4 22 Campania 424 17,5 15,3 Puglia 209 15,7 17,3 Basilicata 60 14,5 19,9 Calabria 133 15,3 18,3 Sicily 195 16,2 18 68 12,9 17,6 192 14,1 19,7 Sardinia Italy Transfers in Italian public sector (% of total expenditures, 2001) Taxes Soc. Sec. contributions Transfers from (1) Central government (1) (2) (3) (4) Other revenues (5) Deficit (6) 78,3 0,2 0,0 0,5 0,0 0,0 0,0 0,1 10,7 10,2 0,0 70,1 27,4 0,0 0,0 0,0 0,0 0,4 2,0 0,0 40,9 0,0 53,0 0,0 0,0 0,0 0,2 0,3 4,9 0,8 0,0 0,0 0,0 0,0 90,2 0,0 0,2 0,3 4,9 0,8 28,5 0,0 21,9 0,0 13,2 0,0 0,0 1,3 33,5 1,6 Other public institutions (6) 3,6 0,2 52,0 4,7 12,6 0,0 3,4 5,1 18,6 -0,2 Duplications 0,0 0,0 57,7 1,2 33,5 0,0 0,6 1,6 5,5 -0,1 Social security institutions (2) Regions (3) Local Health Units (4) Provinces and municipalities (5) Transfers vs. own resources Type of transfers, 1996-2005 Figure 3. Total, current and capital transfers 120000 Millions euro 100000 80000 60000 40000 20000 0 1996 1997 1998 1999 2000 2001 2002 ye a r TR_ITA TCC_ITA TCK_ITA 2003 2004 2005 Model specification Specification TRit / POPit f (POL it , ECO it , HEALTH it , DEM it ) Transfers per capita Total Earmarked to current expenditures Earmarked to capital expenditures As a function of Economic state variables Political variables Demographic indicators Health care variables Economic state variables + Ut-1 lagged unemployment - DGDP/POP regional growth differential - GDP/POP income per capita + TRN linear trend, incremental rule (spesa storica) Padovano (2007), Perotti (2001) vs. closing income gap Political variables - 1 + ELN national elections dummy (Grossman, 1994; Rogoff, 1990) + ELR regional elections dummy (Grossman, 1994; Rogoff, 1990) - NDIF vote margin in national elections + RDIF vote margin at regional elections (Cox and McCubbins, 1988) + RDIF, - RDIF2 (Dixit and Londregan, 1994) Political variables - 2 + SAME dummy for alignment effect (Dasgupta et al. 2002) + YEARS lobbying efficiency of region (Olson, 1982) - RIGHT dummy for ideology (Hibbs, 1977, Alesina, 1997) Demographic variables POP + demand effect, too big to fail effect – economies of scale + POP15 education, social security + POP65 health care, social security Health care variables BED, number of hospital beds × 1000 inhabitants + demand induced effect, Niskanen effect - economies of scale (Crivelli et al. 2000) + PUPHY Public sector doctors, demand induced effect, Niskanen effect + PRPHY private sector doctors, demand effect Empirical strategy Model 1: only economic state variables welfare economics explanatory power Model 2: full model, 20 regions Model 3: 15 RSOs Model 4: 5 RSSs Model 5: current transfers Model 6: capital transfers Model 7: 1999-2006 sample, check for expectations changes Model 8: political economy vs. welfare economics interpretation of economic state variables Estimates: economic variables Model 1 2 3 4 5 6 7 8 Sample 20 regions 1996-2006 20 regions 1996-2006 15 RSOs 1996-2006 5 RSSs 1996-2006 20 regions 1996-2006 20 regions 1996-2006 20 regions 1999-2006 20 regions 1996-2006 TR/POP TR/POP TR/POP TR/POP TRCC/POP TRCK/POP TR/POP TR/POP Dependent variable Ut-1 3.121*** (0.303) 4.4644*** (0.38) 3.446*** (0.411) 2.845*** (0.592) 0.539*** (0.072) 4.122*** (0.48) 3.928*** (0.608) DGGDP/POP -1.22*** (0.314) -2.516*** (0.265) -2.69*** (0.472) -1.645 (0.532) -0.895*** (0.089) -2.407*** (0.307) -2.636*** (0.388) GDP/POP -13.088 (8.259) 0.017** (0.008) TREND C 0.276*** (0.023) -2.349*** (0.326) 0.038 (0.04) -0.086*** (0.024) -0.161 (0.74) 0.006*** (0.002) -0.016** (0.007) 0.02*** (0.008) -0.377*** (0.07) -2.263*** (0426) -1.865*** (0.408) Estimates: political variables-1 Model 1 2 3 Sample 20 regions 19962006 20 regions 19962006 15 RSOs 19962006 Dependent variable TR/POP TR/POP TR/POP 4 5 RSSs 19962006 TR/POP 5 6 7 8 20 regions 1996-2006 20 regions 1996-2006 20 regions 19992006 20 regions 1996-2006 TRCC/PO P TRCK/POP TR/POP TR/POP ELN 0.093*** (0.02) 0.103*** (0.025) 0.082*** (0.024) 0.032*** (0.004) 0.069*** (0.015) 0.103*** (0.021) ELR 0.128*** (0.02) -0.119 (0.207) 0.071 (0.054) 0.02*** (0.007) 0.173*** (0.017) 0.128*** (0.022) YEARS 0.037*** (0.005) -0.027*** (0.041) 0.025** (0.012) 0.001 (0.001) 0.043*** (0.004) 0.039*** (0.006) SAME 0.035** (0.017) 0.066*** (0.014) 0.058** (0.027) 0.006*** (0.002) 0.023 (0.014) 0.032** (0.017) 0.05*** (0.01) Estimates: political variables-2 Model 1 2 3 Sample 20 regions 19962006 20 regions 19962006 15 RSOs 19962006 Dependent variable TR/POP TR/POP TR/POP NDIF -9.806*** (2.2) -23.9* (14.19) RDIF 1.126*** (0.174) 0.253*** (0.069) (RDIF)2 -1.372*** (0.393) RIGHT -0.067*** (0.017) 4 5 RSSs 19962006 TR/POP 15.928*** (2.16) 5 6 7 8 20 regions 1996-2006 20 regions 1996-2006 20 regions 19992006 20 regions 1996-2006 TRCC/POP TRCK/POP TR/POP TR/POP -16.942*** (2.98) 3.16*** (0.489) -7.971 (1.69) *** -10.434*** (2.33) 0.234*** (0.1) 0.045*** (0.016) 0.64*** (0.155) 1.023*** (0.19) -0.459 (0.38) -0.896** (0.489) -0.066*** (0.018) -0.066 (0.018) -38.144*** (5.87) -0.0005*** (0.00001) -0.11 (0.03) 0.026*** (0.003) Estimates: demographic controls Model 1 2 3 4 5 6 7 8 Sample 20 regions 19962006 20 regions 1996-2006 15 RSOs 19962006 5 RSSs 19962006 20 regions 1996-2006 20 regions 1996-2006 20 regions 19992006 20 regions 19962006 Dependent variable TR/POP TR/POP TR/POP TR/POP TRCC/POP TRCK/POP TR/POP TR/POP -1.23-07*** (2-08) -9.35-08*** (1.75-08) 8.89-06*** (1.59-06) -5.49-08 (3.53-08) -2.3-08*** (3.35-09) -1.51- -1.44- 07*** 07*** (2.68)-08 (2.33-08) POP POP15 5.989*** (1.772) 0.582 (1.843) POP65 7.178*** (0.805) 2.599** (0.856) 28.852** * (11.01) 1.569 (1.157) 0.236 (0.358) 9.492*** (2.27) 5.405*** (1.756) 2.203*** (0.446) 0.707*** (0.19) 7.748*** (0.989) 6.818*** (0.84) Estimates: health care variables Model 1 2 3 4 5 6 7 8 Sample 20 regions 1996-2006 20 regions 1996-2006 15 RSOs 19962006 5 RSSs 19962006 20 regions 1996-2006 20 regions 1996-2006 20 regions 19992006 20 regions 1996-2006 TR/POP TR/POP TR/POP TR/POP TRCC/POP TRCK/POP TR/POP TR/POP 1.45-05 (0.7.74-06) 3.24-06*** (6.42-07) -3.64-05*** (5.89-06) 3.41-05*** (4.89-06) 0.0003*** (3.7-05) -0.0002 (0.0002) 0.0004** (0.0002) -0.161 (0.74) -0.377*** (0.07) -2.263*** (0426) -1.865*** (0.408) Dependent variable BEDS 3.00-05*** (4.23-06) 1.68-05*** (3.5-06) PUPHY 0.0005** (0.0002) 0.0006*** (0.0001) 5.31-05*** 1.52-05 0.276*** (0.023) -2.349*** (0.326) Yes Yes No No Yes No Yes Yes Adjusted R2 0.485 0.755 0.755 0.849 0.65 0.777 0.878 0.715 S.E.R. 0.374 0.408 0.451 0.16 0.23 0.104 0.409 0.404 50.92*** 25.67*** 30.5*** 47.617*** 17.96 42.75*** 59.86*** 23.405*** Durbin Watson 2.05 1.947 1.85 2.02 1.97 1.78 2.177 1.93 Obs. 210 210 165 55 210 210 150 210 C AR(1) F-statistic RSOs fixed effects Region Model 3 Region Model 3 ABR 7.26 UMB 6.41 MOL 7.06 LOM 6.38 CAL 6.98 ERO 6.31 VEN 6.71 MAR 6.29 CAM 6.67 TOS 6.26 PUG 6.66 PIE 6.25 BAS 6.49 LIG 6.06 LAZ 6.44 RSSs fixed effects Region Model 4 SIC -49.86 SAR -19.26 FVG -16.81 TAA -14.05 VDA -7.19 Main results: commentary-1 Inclusion of political, health care and economic variables increases model’s explanatory power by 33% In RSOs electoral process prevails PBC Alignment effect Grants reward local political success (Cox and McCubbins, 1988) National political success lowers grants In RSSs lobbying more important (different party system) Grants targeted to swing regions (Dixit and Londregan, 1994) More resistance to further grants in RSSs Main results: commentary-2 Right wing governments receive less grants in total and for current expenditures (partisan effect) Receive more grants for capital expenditures Health care variables reveal significant induced demand/Niskanen effects No expectations turbulence (but more research is warranted) Political economy explanations of interregional redistribution more supported than standard welfare economics ones
© Copyright 2026 Paperzz