Horizontal demand curves: the 1st Fallacy • Demand curve for single firm cannot be horizontal: • Stigler (1957). “Perfect competition historically considered”, Journal of Political Economy, 65: 1-17 dQ • Leading journal dqi • Lead article too! • Leading neoclassical: main d n q j opponent of Sweezy (“kinked dqi j 1 demand curve”) and Means d (“actual administered pricing q1 q2 ... qi ... qn dqi policies of real companies”); See Freedman (1995, 1998) 0 0 ... 1 ... 0 dP dP dQ dP 0 dqi dQ dqi dQ dP dP dqi dQ dP dQ dP dQ dP dQ dP 0 dQ Steve Keen 2004 1 MC=MR… The 2nd Fallacy • What matters to profit-maximising firm is total revenue – total costs • Total costs under its control • Total revenue depends on – Own actions (a bit) – Actions of other firms (a lot, especially for “competitive” industries) • So real profit-maximisation occurs where total derivative of revenue = total derivative of costs (assuming rising marginal cost…) n q Equals 1 since d j qi qi 0 dQ Q j 1 q j Steve Keen 2004 qj Q 1 Q 1 qj 2 MC=MR… The 2nd Fallacy • So profit maximisation rule for single firm is: n P Q qi TC qi 0 qj j 1 q j • Second bit is marginal cost once & zero n-1 times 1 TC qi n 1 TC qi MC qi n 1 0 qi qj • Equals 1 once • First bit is: when i=j n P Q qi P Q qi qi P Q j 1 qj qj j 1 q j n • (n-1) times this is zero since firms independent • This is Steve Keen 2004 dP dP dq j dQ n times 3 MC=MR… The 2nd Fallacy • So for profit maximisation the firm sets P Q qi TC qi qj j 1 q j P Q n qi P ` Q MC qi 0 n • Rearranging to show “marginal revenue”: P Q n qi P ` Q MC qi P Q qi P ` Q n 1 qi P ` Q MC qi MR qi n 1 qi P ` Q MC qi 0 • So true profit maximisation formula is: MR qi MC qi n 1 qi P ` Q Steve Keen 2004 4 MC=MR… The 2nd Fallacy • Can replace RHS with something more meaningful • Since n P Q qi TC qi qj j 1 q j P Q n qi P ` Q MC qi 0 1 ` • We know that qi P Q P Q MC qi n • Substituting this into MR qi MC qi n 1 qi P Q ` • We get the true profit maximisation rule: n 1 MR qi MC qi P Q MC qi n • There’s also an easier way to prove this… Steve Keen 2004 5 MC=MR… The 2nd Fallacy • Assume firms equate MC & MR: Substitute dP dP dqi dQ n d mri mc qi 0 P qi dq P Q mc qi i 1 i 1 i i 1 n n n copies of P Replace with Q Move a P… Substitute mc q MC Q n d n P qi P MC Q Move to front dQ i 1 i 1 n n copies of MC d n P Q P n MC Q & a MC… dQ d n 1 P P Q P n 1 MC Q MC Q 0 dQ This is MR(Q) (industry, not firm) Rearranging this: Steve Keen 2004 6 MC=MR… The 2nd Fallacy MR MC n 1 P MC 0 • “Profit maximising” strategy of each firm maximising profit w.r.t. its own-output results in aggregate output level where marginal cost exceeds marginal revenue • Why? Own-output marginal revenue is not total marginal revenue: dTRi QR , qi P Q q dQ P Q qi dqi i R QR qi • This component ignored by conventional belief (and unknowable by firms)… Steve Keen 2004 7 MC=MR… The 2nd Fallacy • Profit maximising formula is not MRi=MCi but: mr qi mc qi n 1 P Q MC qi n 0 • Take earlier formula and rearrange so that industry MR-MC is on one side of equals sign: n mr i 1 i mci n 1 P n 1 MC MR MC n mri mci i 1 n 1 P n 1 MC MR MC • Set this to zero to find maximum aggregate profit; • Take terms in P and MC inside summation: Steve Keen 2004 8 MC=MR… The 2nd Fallacy • Equating this expression to zero maximizes profit: n 1 mr mc P MC 0 i i n i 1 n • True single-firm profit-maximization rule: n 1 mri mci P MC 0 n • Example: – n firm industry with constant identical marginal cost = c – Linear demand curve P(Q)=a - bQ Steve Keen 2004 9 MC=MR… The 2nd Fallacy • Standard false neoclassical advice: – equate MRi & MC – Output converges to PC result as number of firms increases (Stigler’s result): • Conditions: P Q a b Q dP b dQ MRi P q MC c dP P b q dQ • Result: MRi P b q MC c a b Q b q c a b n q b q c b n 1 q a c 1 a c 1 a c Q Monopoly: n 1 b 2 b n a c a c as n Competition: Q n q n 1 b b q Steve Keen 2004 10 MC=MR… The 2nd Fallacy • But profit maximisers solve: n 1 P b q c P c n n 1 MR MC P MC n • Competitive industry produces “monopoly” level n 1 b q P c P c output at “monopoly” price n P c • Industry output independent q of number of firms n b a b n q c a c • Similar result for other q q marginal cost functions: n b n b 1 a c “competitive” outcome same q 2 n b as monopoly • Aggregating: 1 a c Q n q • Same as for monopoly 2 b Steve Keen 2004 11
© Copyright 2026 Paperzz